Zum Inhalt

Publikationen

Arbeiten in referierten Zeitschriften

  • Neumann, C., Kunert, J. (2020): On MSE-optimal circular crossover designs. Submitted.
  • Singh, R., Kunert, J. (2020): Efficient crossover designs for non-regular settings. Metrika, in print.
  • Kunert, J., Mielke, J. (2021): Efficient designs for the estimation of mixed and self carryover effects. Statistica Sinica 31, 1081 - 1099.
  • Kalhoff, H., Schmidt, I.V., Heindl, I., Kunert, J., Kersting, M. (2021): Feeding frozen complementary foods promotes food acceptance in infants: The randomized intervention trial Baby Gourmet. Nutrition Research 87, 49 - 56.
  • Singh, R., Kunert, J., Stufken, J. (2021): On optimal fMRI designs for correlated errors. Journal of Statistical Planning and Inference 212, 84 - 96.
  • Mutwill, A.M., Zimmermann, T.D., Reuland, C., Fuchs, S., Kunert, J., Richter, S.H., Kaiser, S., Sachser, N. (2019): High Reproductive Success Despite Queuing -- Socio-Sexual Developement of Males in a Complex Social Environment. Frontiers in Psychology 10, 2810
  • Kästner, N., Richter, S.H., Urbanik, S., Kunert, J., Waider, J., Lesch, K.-P., Kaiser, S., Sachser, N. (2019): Brain serotonin deficiency affects female aggression. Scientific Reports 9, Article number: 1366.
  • Neumann, C., Kunert, J. (2018): On MSE-optimal crossover designs. Annals of Statistics 46, 2939 - 2959.
  • Bailey, R.A., Cameron, P.J., Filipiak, K., Kunert, J., Markiewicz, A. (2017): On optimality and construction of circular repeated-measurements designs. Statistica Sinica 27, 1 - 22.
  • Bludowsky, A., Kunert, J., Stufken, J. (2015): Optimal designs for the carryover model with random interactions between subjects and treatments. Australian and New Zealand Journal of Statistics 57, 517 - 533.
  • Wilk, A., Kunert, J. (2015): Optimal crossover designs in a model with self and mixed carryover effects with correlated errors. Metrika 78, 161 - 174.
  • Dette, H., Kunert, J. (2014): Optimal Designs for the Michaelis Menten Model with Correlated Observations. Statistics 48, 1254 - 1267.
  • Alexy, U., Schaefer, A., Sailer, O., Busch-Stockfisch, M., Huthmacher, S., Kunert, J., Kersting, M. (2011): Sensory preferences and discrimination ability of children in relation to their body weight status. Journal of Sensory Studies 26, 409 - 412.
  • Kunert, J., Mersmann, S. (2011): A-optimal designs for treatment-control comparisons in microarray experiments with random block effects. Journal of Statistical Theory and Practice 5, 69 - 79.
  • Kunert, J., Mersmann, S. (2011): Optimal designs for an interference model. Journal of Statistical Planning and Inference 141, 1623 - 1632.
  • Kunert, J., Martin, R.J., Eccleston, J. (2010): Optimal block designs comparing treatments with a control when the errors are correlated. Journal of Statistical Planning and Inference 140, 2719 - 2738.
  • Richter, S. H., Garner, J. P., Auer, C., Kunert, J., Würbel, H. (2010): Systematic variation improves reproducibility of animal experiments. Nature Methods 7, 167 - 168.
  • Alexy, U., Schaefer, A., Sailer, O., Busch-Stockfisch, M., Reinehr, T., Kunert, J., Kersting, M. (2010): Sensory preferences and discrimination ability of children before and after an obesity intervention. International Journal of Pediatric Obesity 5, 116 - 119.
  • Gieland, A., Busch-Stockfisch, M., Kersting, M., Hilbig, A., Kunert, J., Sailer, O. (2009): Ernährungshistorie und sensorische Präferenzen im Vorschulalter. Ernährungs Umschau 10/09, 560 - 564.
  • Kunert, J., Stufken, J. (2008): Optimal crossover designs for two treatments in the presence of mixed and self carryover effects. Journal of the American Statistical Association 103, 1641 - 1647.
  • Dette, H., Kunert, J. Pepelysheff, A. (2008): Exact optimal designs for weighted least squares analysis with correlated errors. Statistica Sinica 18, 135 - 154.
  • Henkenjohann, N., Kunert, J. (2007): An efficient sequential optimization approach based on the multivariate expected improvement criterion. Quality Engineering 19, 267 - 280.
  • Holland-Letz, T., Endres, H.G., Biedermann, S., Mahn, M., Kunert, J., Groh, S., Pittrow, D., von Bildering, P., Sternitzky, R., Diehm, C. (2007): Reproducibility and reliability of the ankle-brachial index as assessed by vascular experts, family physicians and nurses. Vascular Medicine 12, 105 - 112.
  • Kunert, J., Sailer, O. (2007): Randomization of neighbour balanced generalized Youden designs. Journal of Statistical Planning and Inference 137, 2045 - 2055.
  • Kunert, J., Auer, C., Erdbrügge, M., Ewers, R. (2007): An experiment to compare Taguchi's product array and the combined array. Journal of Quality Technology 39, 17 - 34.
  • Bailey, R.A., Kunert, J. (2006): On optimal cross-over designs when carry-over effects are proportional to direct effects. Biometrika 93, 613 - 625.
  • Adekeye, K., Kunert, J. (2006): On the Comparison of Run Orders of Unreplicated 2k-p-designs in the presence of a time trend. Metrika 63, 257 - 269.
  • Auer, C., Kunert, J. (2006): On A Heuristic Analysis of Highly Fractionated 2n Factorial Experiments. Metrika 63, 43 - 54.
  • Kunert, J., Sailer, O. (2006): On Nearly Balanced Designs for Sensory Trials. Food Quality and Preference 17, 219 - 227.
  • Marin-Galiano, M., Kunert, J. (2006): Comparison of ANOVA with the Tobit Model for Analysing Sensory Data. Food Quality and Preference 17, 209 - 218.
  • Henkenjohann, N. Göbel, R., Kleiner, M., Kunert, J. (2005): An Adaptive Sequential Procedure for Efficent Optimization of the Sheet Metal Spinning Process. Quality and Reliability Engineering International 21, 439 - 455.
  • Chen, Y., Kunert, J. (2004): A New Quantitative Method for Analysing Unreplicated Factorial Designs. Biometrical Journal 46, 125 - 140.
  • Kunert, J., Martin, R.J., Pooladsaz, S. (2003): Optimal designs under two related models for interference. Metrika 57, 137 - 143.
  • Lachnit, M., Busch-Stockfisch, M., Kunert, J., Krahl, T. (2003): Suitability of Free Choice Profiling for the assessment of orange-based carbonated soft-drinks. Food Quality and Preference 14, 257 - 263.
  • Kunert, J. (2002): Statistical Methods to Examine Differences in the Rating of Soft-Drinks Among Different Groups of Consumers. Food Quality and Preference 13, 555 - 559.
  • Kunert, J., Stufken, J. (2002): Optimal crossover designs in a model with self and mixed carryover effects. Journal of the American Statistical Association 97, 898 - 906.
  • Bernstein, D.M., Riego Sintes, J.M., Ersboell, B.K., Kunert, J. (2001): Biopersistence of Synthetic Mineral Fibers as a Predictor of Chronic Inhalation Toxicity in Rats. Inhalation Toxicology 13, 823 - 849.
  • Bernstein, D.M., Riego Sintes, J.M., Ersboell, B.K., Kunert, J. (2001): Biopersistence of Synthetic Mineral Fibers as a Predictor of Chronic Intraperitoneal Injection Tumour Response in Rats. Inhalation Toxicology 13, 851 - 875.
  • Kunert, J. (2001): On repeated difference testing. Food Quality and Preference 12, 385 - 391.
  • Kunert, J., Montag, A., Pöhlmann, S. (2001): The Quincunx: History and Mathematics. Statistical Papers 42, 143 - 169.
  • Kunert, J., Martin R.J. (2000): On the determination of optimal designs for an interference model. Annals of Statistics 28, 1728 – 1742.
  • Wameling, A., Schäper, M., Kunert, J., Blaszkewicz, M., van Thriel, C., Zupanic, M., Seeber, A. (2000): Individual Toluene Exposure in Rotogravure Printing: Increasing Accuracy of Estimation by Linear Models Based on Protocols of Daily Activities and Other Measures. Biometrics 56, 1218 - 1221.
  • Voss, B., Kunert, J., Dahms, S., Weiss, H. (2000): A Multinomial Model for the Quality Control of Colony Counting Procedures. Biometrical Journal 42, 263 - 278.
  • Kunert, J. (2000): Randomization of Neighbour Balanced Designs. Biometrical Journal 42 , 111 - 118.
  • Kunert, J. (2000): Workshop on the Statistical Analysis of Sensory Profiling Data: Randomization / Permutation / ANOVA. Food Quality and Preference 11, 141 - 143.
  • Meyners, M., Kunert, J., Qannari, E.M. (2000): Comparing Generalized Procrustes Analysis and STATIS. Food Quality and Preference 11, 77 - 83.
  • Kunert, J., Martin, R.J. (2000): Optimality of Type I Orthogonal Arrays for Crossover Models with Correlated Errors. Journal of Statistical Planning and Inference 87, 119 - 124.
  • Kunert, J., Meyners, M. (1999): On the Triangle Test with Replications. Food Quality and Preference 10, 477 - 482.
  • Kunert, J., Qannari, E.M. (1999): A simple alternative to Generalised Procrustes Analysis. Application to sensory profiling.  Journal of Sensory Studies 14, 197 - 208.
  • Kunert, J. (1998): Sensory Experiments as Crossover Studies.  Food Quality and Preference 9, 243 - 253.
  • Kunert, J. (1998): On the analysis of circular balanced crossover designs.  Journal of Statistical Planning and Inference 69, 359 - 370.
  • Kunert, J. (1997): Use of the factor sparsity assumption to get an estimate of variance in industrial experiments with many factors. Technometrics 39,  81 – 90.
  • Kunert, J., Lehmkuhl, F., Schleppe, A. (1995): Ein statistisches Experiment mit Sch ülern auf Bevorzugung von Erfrischungsgetränken.  Stochastik in der Schule 15, Issue 3, 23 - 42.
  • Kunert, J. (1994): Optimality of block designs with variable block sizes and random block effects.  Metrika 41, 71 – 81.
  • Kunert, J. (1993): A note on optimal designs with a non-orthogonal row-column structure.  Journal of Statistical Planning and Inference 37, 265 - 270.
  • Kunert, J., Utzig, P. (1993): Estimation of variance in cross-over designs. Journal of the Royal Statistical Society B 55, 919 - 927.
  • Jones, B., Kunert, J., Wynn, H.P. (1992): Information matrices for mixed effects models with applications to the optimality of repeated measurements designs.  Journal of  Statistical Planning and Inference 33, 261 - 274.
  • Kunert, J. (1991): Cross-over designs for two treatments and correlated errors. Biometrika 78, 315 - 324.
  • Bailey, R.A., Kunert, J., Martin, R.J. (1991): Some comments on gerechte designs. II Randomization Analysis and other methods that allow for inter-plot dependence.  Journal of Agronomy & Crop Science 166, 101 - 111.
  • Bailey, R.A., Kunert, J., Martin, R.J. (1990): Some comments on gerechte designs. I Analysis for uncorrelated errors.  Journal of Agronomy & Crop Science 165, 121 - 130.
  • Kunert, J. (1990): On the power of tests for multiple comparison of three normal means.  Journal of the American Statistical Association 85, 808 - 812.
  • Finner, H., Kunert, J., Sonnemann, E. (1989): Über die Berechnung des Wirkungsgrades von Pflanzenschutzmitteln. Nachrichtenbl. Deut. Pflanzenschutzd. 41, 145 - 149.
  • Kunert, J. (1987): On variance estimation in crossover designs. Biometrics 43, 833 - 845.
  • Kunert, J., Martin, R.J. (1987): On the optimality of finite Williams II(a) designs.  Annals of Statistics 15, 1604 – 1628.
  • Kunert, J., Martin, R.J. (1987): Some results on optimal design under a first-order autoregression and on finite Williams II(a) designs. Commun. Statist. - Theory & Methods 16, 1901 - 1922.
  • Kunert, J. (1987): Neighbour balanced block designs for correlated errors.  Biometrika 74, 717 - 724.
  • Kunert, J. (1987): An example of universal optimality in a full-rank model.  Metrika 34, 217 - 223.
  • Kunert, J. (1985): Optimal experimental design when the errors are assumed to be correlated.  Statistics and Decisions, Supplement 2, 287 - 298.
  • Kunert, J. (1985): Optimal repeated measurements designs for correlated observations and analysis by weighted least squares. Biometrika 72, 375 - 389.
  • Kunert, J. (1984):  Designs balanced for circular residual effects. Commun. Statist. - Theory & Methods 13, 2665 - 2671.
  • Kunert, J. (1984): Optimality of balanced uniform repeated measurements designs. Annals of Statistics 12, 1006 - 1017.
  • Kunert, J. (1983): Optimal design and refinement of the linear model with applications to repeated measurements designs. Annals of Statistics 11, 247 – 257.

Sonstige Veröffentlichungen

  • Hopp, W., Kirschner, T., Kunert, J. (2019): Die frühen Kälberverluste in Milchkuh- und Mutterkuhbetrieben. Tierärztliche Umschau 74, 288 - 291.
  • Kunert, J. (2012): Discussion of a paper by Gilmour and Trinca. Applied Statistics 61, 386 - 387.
  • Kunert, J., Wilk, A. (2011): Unreplicated fractional factorials, analysis with the half-normal plot and randomization of the run order. In: Optimal Design of Experiments -Theory and Application. Proceedings of the International Conference in Honour of the late Jagdish Srivastava, 72 - 82
  • Wenzel, S., Straatmann, S., Kwiatkowski, L., Schmelzer, P., Kunert, J. (2010): A Novel Multi-Objective Target Value Optimization Approach. In: Classification as a Tool for Research, (Editoren: Locarek-Junge, H. und Weihs, C.), Springer, Heidelberg, 801 - 809.
  • Homberg, W., Beerwald, Ch., Hornjak, D., Rostek, T., Pröbsting, A., Kunert, J., Wilk, A. (2009): Incremental Forming of Tubes and Sheets Assisted by Friction-Induced Heating. In: Functionally Graded Materials in Industrial Mass Production, Steinhoff, K., Maier, H.-J., Biermann, D. (Hrg.), Verlag Wissenschaftliche Scripten, Auerbach, 129 - 137.
  • Kunert, J., Homberg, W., Auer, C., Hornjak, D., Wilk, A. (2009): Thermal Assisted Incremental Forming of Tubes and Sheets with Process-Integrated Heat Generation - Statistical Contributions -. In: Functionally Graded Materials in Industrial Mass Production, Steinhoff, K., Maier, H.-J., Biermann, D. (Hrg.), Verlag Wissenschaftliche Scripten, Auerbach, 139 - 144.
  • Morell, O., Bernholt, T., Fried, R. Kunert, J., Nunkesser, R. (2008): An Evolutionary Algorithm for LTS-Regression: A Comparative Study, In: COMPSTAT 2008: Proceedings in Computational Statistics. Vol. II (Contributed Papers), Brito, M.P. (Hrg.), Physika-Verlag, Heidelberg, 585 - 593.
  • Kunert, J., Martin, R.J., Rothe, S. (2008): Optimal Designs for Treatment-Control Comparisons in Microarray Experiments. In: Statistical Inference, Econometric Analysis and Matrix Algebra. Festschrift in Honour of Götz Trenkler, Schipp, B. und Krämer, W. (Hrg.), Physica Verlag Heidelberg, 115 - 124.
  • Kunert, J. (2007): Randomization in Experimental Designs. In: Encyclopedia of Statistics in Quality and Reliability , Ruggieri, F., Kenett, R. and Faltin, F.W. (eds.) John Wiley and Sons Ltd., Chichester, UK, 1559 - 1563.
  • Sahmer, K., Vigneau, E., Qannari, E.M., Kunert, J. (2005): Clustering of variables with missing data: application to preference studies. In:  Classification - the Ubiquituous Challenge, C. Weihs, W. Gaul (Hrg.), Springer, 208 - 215. 
  • Meyners, M., Kunert, J. (2003): Statistik in der Sensorik - Multivariate Verfahren. In:  Praxishandbuch Sensorik in der Produktentwicklung und Qualitätssicherung , M. Busch-Stockfisch (Hrg.), Behr's Verlag, VI.2, pp. 1 - 58.
  • Meyners, M., Kunert, J. (2002): Statistik in der Sensorik - Univariate Verfahren. In: Praxishandbuch Sensorik in der Produktentwicklung und Qualitätssicherung , M. Busch-Stockfisch (Hrg.), Behr's Verlag, VI.1, pp. 1 - 43.
  • Kunert, J., Meyners, M., Erdbrügge, M. (2002): On the applicability of ANOVA for the analysis of sensory data. 7e Journées européennes agro-industrie et méthodes statistiques , Société  Française de Statistique (Hrg.), 129 - 134.
  • Göbel, R., Erdbrügge, M., Kunert, J., Kleiner, M. (2001): Multivariate optimisation of the metal spinning process in consideration of categorical quality characteristics. In: ENBIS conference in Oslo, 17 - 18 September 2001, CD-rom.
  • Erdbrügge, M., Göbel, R., Kleiner, M., Kunert, J. (2001): Optimales Drücken. Statistische Versuchsplanung bei qualitativen Zielgrößen. Qualität und Zuverlässigkeit 46, 1180 - 1183.
  • Kunert, J., Montag, A., Pöhlmann, S. (2001): Das Galtonbrett und die Glockenkurve.  Infografiken, Medien, Normalisierung: Zur Kartografie politisch-sozialer Landschaften. U. Gerhard, J. Link, E. Schulte-Holtey (Hrg.), Synchron Verlag, 25 – 53.
  • Kunert, J. (2001): Interference designs with circular structure. Mathematical Statistics with Applications in Biometry. J. Kunert, G. Trenkler  (Hrg.), Eul Verlag, 355 - 368.
  • Kunert, J. (2000): Permutation tests and randomization in sensory experiments. 6e Journées européennes agro-industrie et méthodes statistiques , Société Française de Statistique (Hrg.), 1.1 - 1.9.
  • Kunert, J., Lehmkuhl, F. (1998): The generalized ß - method in Taguchi experiments.  MODA 5 - Advances in Model-Oriented Data Analysis. A.C. Atkinson, L. Pronzato, H.P. Wynn (Hrg.), Physica Verlag, 223 - 230.
  • Toutenburg, H., Gössl, R., Kunert, J. (1998):  Quality Engineering. Eine Einführung in Taguchi-Methoden. 254 Seiten, Prentice Hall.
  • Kunert, J. (1995): Über den Nutzen der Statistischen Versuchsplanung. Datenanalyse mit modernen Methoden der Stochastik. Ergebnisse eines Expertengespräches am 21. und 22. September 1995 in Düsseldorf . VDI Technologiezentrum Physikalische Technologien (Hrg.), 64 - 69.
  • Kunert, J. (1995): Einige  Überlegungen zur Versuchsplanung und zur Schätzung des experimentellen Fehlers. Informationsgewinnung aus Meßdaten. 6. Arbeitsgespräch der Fachgruppe Physik / Informatik / Informationstechnik . H. Hofmann, D. Richter, Ch. Zeidler (Hrg.), 112 – 123.
  • Kunert, J. (1994): Vergleich von Varianzschätzern bei nicht wiederholten Faktorplänen. Grazer Mathematische Berichte 324, 105 - 113.
  • Elster, C., Honerkamp, J., Hönig, A., Kunert, J. (1994): Statistische Analyse eines mikromechanischen Materialmodells. Qualität und Zuverlässigkeit 39, 1387 - 1391.
  • Kunert, J., Weipert, D. (1993): Cross-validation as a means to determine the number of regressors. Practical Models for Relationships between Data Sets . FLAIR SENS Project Vol. 2 No 3, 69 – 73.
  • Kunert, J. 1993): On designs with a non-orthogonal row-column structure.  Model Oriented Data Analysis . W.G. Müller, H.P. Wynn und A.A. Zhigljavsky (Hrg.), Physica Verlag, 105 - 112.
  • Kunert, J. (1990): Zusammenhang: Randomisation und Auswertung.  Agrarinformatik, Vol. 18: Referate des Symposium  über EDV-Anwendungen und Biometrie in der Phytomedizin in Hohenheim März 1990. H. Bleiholder (Hrg.), Ulmer, 15 - 29.
  • Wynn, H.P., Chaloner, K., Kunert, J. (1990): Discussion of a paper by R. Mead. Journ. Royal Statist. Soc. A 153, 186.
  • Kunert, J. (1988): Considerations on optimal designs for correlations in the plane. Optimal Design and Analysis of Experiments. Y. Dodge, V.V. Fedorov und H.P. Wynn (Hrg.), North Holland, 123 - 131.
  • Kunert, J. (1987): Optimal block designs for correlated observations.  Model-oriented data analysis. V.V. Fedorov und H. Läuter (Hrg.), Springer, 44 - 52.
  • Kunert, J., Sonnemann, E. (1984): Zweifachblockpläne mit Nachbarschaftsstrukturen. Strukturen und Prozesse. Neue Ansätze in der Biometrie.  R. Repges und Th. Tolxdorf (Hrg.), Springer, 45 - 72.

Kalender

Zur Veranstaltungsübersicht

Anfahrt & Lageplan

Der Campus der Technischen Universität Dortmund liegt in der Nähe des Autobahnkreuzes Dortmund West, wo die Sauerlandlinie A45 den Ruhrschnellweg B1/A40 kreuzt. Die Abfahrt Dortmund-Eichlinghofen auf der A45 führt zum Campus Süd, die Abfahrt Dortmund-Dorstfeld auf der A40 zum Campus-Nord. An beiden Ausfahrten ist die Universität ausgeschildert.

Direkt auf dem Campus Nord befindet sich die S-Bahn-Station „Dortmund Universität“. Von dort fährt die S-Bahn-Linie S1 im 15- oder 30-Minuten-Takt zum Hauptbahnhof Dortmund und in der Gegenrichtung zum Hauptbahnhof Düsseldorf über Bochum, Essen und Duisburg. Außerdem ist die Universität mit den Buslinien 445, 447 und 462 zu erreichen. Eine Fahrplanauskunft findet sich auf der Homepage des Verkehrsverbundes Rhein-Ruhr, außerdem bieten die DSW21 einen interaktiven Liniennetzplan an.
 

Zu den Wahrzeichen der TU Dortmund gehört die H-Bahn. Linie 1 verkehrt im 10-Minuten-Takt zwischen Dortmund Eichlinghofen und dem Technologiezentrum über Campus Süd und Dortmund Universität S, Linie 2 pendelt im 5-Minuten-Takt zwischen Campus Nord und Campus Süd. Diese Strecke legt sie in zwei Minuten zurück.

Vom Flughafen Dortmund aus gelangt man mit dem AirportExpress innerhalb von gut 20 Minuten zum Dortmunder Hauptbahnhof und von dort mit der S-Bahn zur Universität. Ein größeres Angebot an internationalen Flugverbindungen bietet der etwa 60 Kilometer entfernte Flughafen Düsseldorf, der direkt mit der S-Bahn vom Bahnhof der Universität zu erreichen ist.