Jörg Rahnenführer, Franziska Kappenberg

Department of Statistics,
TU Dortmund University

Winter semester 2023/24
Organization

- Suitable modules: MS 6-7 / MD Applications
- Two separate modules with separate exams, 4.5 ECTS each
- In the first seven weeks, Tox I will be given with 4 weekly hours of lecture and 2 weekly hours of exercises
- In the last seven weeks, Tox II will be given with 4 weekly hours of lecture and 2 weekly hours of exercises
- Participation in only one part or in both parts is possible
- Statistics in Toxicology I (Modelling)
 - Lecturer: Franziska Kappenberg
 - Takes place in the first half of the semester, i.e. 9.10.-1.12.
 - Exam on 12.12., retry exam in the end of March
- Statistics in Toxicology II (Testing)
 - Lecturer: Jörg Rahnenführer
 - Takes place in the second half of the semester, i.e. 4.12.-2.2.
 - Exam in February, retry exam in the end of March
Organization

- Lecturer (part II): Prof. Dr. Jörg Rahnenführer, ‘Statistical Methods in Genetics and Chemometrics’
 - Contact: rahnenfuehrer@statistik.tu-dortmund.de
- Lecturer (part I) and exercises: Dr. Franziska Kappenberg, research associate of Prof. Rahnenführer
 - Contact: kappenberg@statistik.tu-dortmund.de
- Moodle: individual Moodle courses for each part
 - Will be linked via the LSF
- The grade will be determined via a written exam for each part separately
- Admission to the written exam will be gained via one corrected exercise sheet for each part, in addition there will be voluntary weekly exercise sheets
- Lecture dates: Monday, 10.15-11.45 and Thursday, 12.30-14.00
- Times for exercises: to be announced
Different approaches to analyzing dose-response data: Consider only the actually measured doses (left) or perform interpolation by a modelling approach.

Often, the goal is to determine ‘alerts’, where a pre-specified effect level is attained.
Different profiles can be observed, thus a variety of concentration-response models need to be taken into account:

- **Gene: 235456_at**, Model: betaMod
- **Gene: 201152_s_at**, Model: emax
- **Gene: 1554418_s_at**, Model: exponential
- **Gene: 204400_at**, Model: linear
- **Gene: 203883_s_at**, Model: quadratic
- **Gene: 217837_s_at**, Model: sigEmax
- **Gene: 1555004_a_at**, Model: emax
- **Gene: 236937_at**, Model: exponential
Stats in Tox I - Modelling: Contents

- Isotonic regression
 - Estimation under order-restrictions
- Basics of concentration-response modelling
 - Overview over different models
 - Models for different types of data
 - Calculation of alert concentrations
 - Modelling vs. testing
 - Optimal design considerations
- Model selection and model averaging
 - The MCP-Mod methodology
 - Model averaging
- Genomic concentration-response data
 - Multiple testing
 - Bi- and order-restricted clustering
Lin, D., Shkedy, Z., Yekutiel, D., Amaratunga, D., Bijnens, L. (Eds.)

- Isotonic regression and order-restricted clustering are based on this book

- Christian Ritz, Signe Marie Jensen, Daniel Gerhard, Jens Carl Streibig

- Introduction of the drc-package used for modelling
Consider the effect of a compound on the weight of mices’ lungs for increasing doses of a compound. Multiple comparisons against the negative control, significant result only for the highest dose.
Stats in Tox II - Testing: Contents

- Proof of hazard using multiple comparisons with negative control
 - Multiple testing
 - Tests for normally distributed endpoints and for proportions
- Trend tests
 - Analysis of long-term effects in cancer studies
 - Survival analysis, tests for survival endpoint
- Analysis of effects in mutagenicity assays
 - Mixture distributions
 - EM algorithm
- Dose-finding in Phase I clinical trials
Stats in Tox II - Testing: Literature

Ludwig A. Hothorn

associated R-package on github with example datasets