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Abstract

We use the difference of two asymmetric M-kernel estimators to detect jumps
in two-dimensional regression functions. The method extends and corrects the
Rotational Difference Kernel Estimator method proposed by Qiu (1997). For
regression functions with only one explicit jump curve and additive noise, we
show consistency for the jump location and height. In a simulation study, the
consistency is also demonstrated for the case that 30% of the observations are
replaced by outliers. In this case, the robust M-kernel estimators are superior
to the classical kernel-estimators.
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1 Introduction

Two-dimensional regression functions with discontinuities are used in various fields
of application. For example, meteorological or geological departments have observa-
tions from fixed gauging stations, which are used to estimate the border of air layers
or mine surfaces. Another application is the detection of edges in image analysis.

There are global an local methods for detecting discontinuities. Mainly in the theory
of multivariate boundary estimation, which is closely related to edge detection, global
approaches are used. For boundary estimation, observations are assumed to follow
a regression function which is smooth except on the boundary of a region. Referred
to images, estimating this boundary is detecting the edge of an object in the image.
(See, e.g., Korostelev and Tsybakov, 1993). For a global approach see, for example,
Carlstein and Krishnamoorthy (1992). A recent extension of their method is found
in Ferger (2004).

Most considerations about estimation of jump locations in regression surfaces con-
cern edge detection in image analysis where diverse local methods are known. For
example, the so-called filter-methods, which like many others use the fact that the
derivative of the image function becomes very large in the vicinity of edges. Other
methods use statistical tests based on the representation of the image as a Markov
field. See Davis (1975) for an overview about some of the “classical” methods, or Peli

and Malah (1982) for a comparison. For some newer techniques see, for example,
Miiller and Song (1994), Qiu and Yandell (1997), or Hou and Koh (2003).

For one-dimensional jump detection, Qiu et al. (1991), Miiller (1992), and Wu and
Chu (1993) introduced similar estimators based on the difference of two one-sided
kernel estimates (DKE - Difference Kernel Estimators). In smooth regions of the
regression function, an estimator using only observations on the left side will be
similar to an estimator using only observations on the right side. In contrast, near
jump points, the difference of these two estimates will be close to the jump height
(see Figure 1).

As generalisation of the one-dimensional DKE, Qiu introduced in 1997 the Rota-
tional Difference Kernel Estimators (RDKE), on which the method discussed in this
paper is based. The most important difference between the two-dimensional and the
one-dimensional case is that the distinction between “left” and “right” side has now
to be done along a direction. According to this direction the difference may strongly
vary. If the considered point lies on an edge, differences calculated along that edge
will be close to the jump height, whereas for other directions, the difference may
even vanish (see Figure 2).
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Figure 1: left sided (solid) and right sided Figure 2: difference of two asymmetric
(dashed) one-dimensional kernel estimations two-dimensional kernel estimations

To cope with this problem, Qiu introduced rotated kernel functions. Based on two
asymmetric two-dimensional kernel functions

Ki(z1,20) =0 for (z1,20) ¢ [—1,1] x [-1,0]

he defined rotated kernel functions Kj(0,z1,z2) = Kj(ri(0,21,72),72(0, 71, 22)),
where r; and 7y describe the coordinates of the pixel o' = (x,z2)" rotated around
an angle 6. With these kernel functions, asymmetric kernel estimators are defined
as
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where hy, and hs, are the bandwidths. Then, mg)(é’, T1,To) — mg)(& T1,Ty) is the
estimated difference between the weighted means of the observations located on the
different sides of (x1, z3) along the direction described by 6.

In practical applications, kernel estimators have the disadvantage of not being ro-
bust. For example, outliers among the observations may have a strong influence
on the estimation. For robust regression estimation, Hdrdle and Gasser (1984) pro-
posed the M-kernel estimators which are a generalization of the kernel estimators.
In Section 2, a robust estimator for two-dimensional jump regression functions com-
bining the concepts of the M-kernel estimators with those of the RDKE method of
Qiu is introduced. Thereby we correct an essential mistake in the original definitions
for the RDKE introduced by Qiu, which is even restated in a recent modification of
the RDKE (Qiu, 2002): The scaling by the bandwidths hy,, and hg, is fundamental
in the theory of kernel estimators (see e.g. Eubank, 1988) and according to the con-
ceptional idea, the rotation should apply to the support of the scaled kernels. But
Qiu applies the rotation after the scaling (see (1)), i.e., the support of the kernels is
first rotated and then scaled. This leads to the effect that the supports are deformed
if the two bandwidths are unequal (see Figure 3). Since this involves a change of
the direction of the line that divides the two kernels, the proofs given by Qiu do



not hold without substantial changes. Therefore, we introduce new kernel functions,
which do not show this disadvantage (see Figure 4).
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Figure 3: Domains of the two asymmetric Figure 4: Domains of the two asymmetric
kernel functions as defined by Qiu (1997) kernel functions used in this paper

As in Qiu (1997), we introduce estimators for the jump curve ¢ and jump height C
for regression functions of the form

m(z) = m(x)+ C(xy)la(z) with A:= {:L‘ €0,1)%: 2y > qﬁ(ml)} ,

where m is the (Lipschitz-) continuous part of the regression function. In Section 3,
the uniform consistency of these estimators is presented for the case that the re-
gression function is corrupted by an additive noise. The proofs are given in the
appendix. Since, with the identity as score function, the M-kernel estimator be-
comes the ordinary kernel estimator, our proofs also include Qiu’s RDKE with the
now corrected succession of scaling and rotating. Moreover, Qiu uses a condition on
the (asymptotical) number of observations in a given area, for example, the domains
of the kernels, which is not proven. Since the design points are not required to be
equidistant, this condition does not trivially hold true but needs further assumptions,
which are included in the assumptions given in Section 3.

Section 4 provides a simulation study which shows the consistency also in the case
where 30% of the observations are replaced by outliers. This simulation study
demonstrates clearly the superiority of the RDKE based on robust M-kernel es-
timators to the RDKE based on the classical kernel estimators.



2 Definitions and assumptions

We consider n observations Z; = m(z;) + ¢; € R at design points x; = (214, 9;) " €
[0,1]2 (1 < i < n). Theresiduals ¢; € R are i.i.d. with symmetric density f : R — R
and F || < M < oo for a p > 4. The regression function is supposed to be of the
form m(z) = m(z) + C(zy)1a(x), with A == {z = (z1,72) € [0,1]? : 29 > ¢(z1)}.
Let the smooth part of the regression function m : [0,1]> — R and the jump curve
C :]0,1] — R\ {0} be Lipschitz-continous with Lipschitz-constant C and Ce
respectively and w.l.o.g. let C(z1) > 0. Further, let the jump height ¢ : [0,1] —
(0,1) be two times differentiable. The aim is to estimate the functions ¢ and C'
describing the jump of the regression function.

Let K;(z) and Ks(x) be two one-sided, continuous kernel functions which fulfill the
following conditions:

(A1) Ki(z) =0 for z¢ [—3,3]x[-1,0] and :

Ky(z) =0 for z¢ [—1, 1]x [0,1] n 2

(A2) [ Kj(x)de=1, je{l,2} §

[7171]2
(A3) K;(x) >0, je{1,2}.

The compact supports and the continuity imply Lipschitz-continuity of the kernel
functions and their powers. Let Ck» be the (common) Lipschitz-constant of the p-th
power of K7 and K>.

With a1 := (cosf, —sind) ", am = (sinf,cosd)", Ag := (a9, a20)" = (‘3059 *SinQ)’

sinf cosf
and H,, := (hln 0 ) we define for j € {1,2} the rotated kernels

0 han
- 1
K99, z) = K;(H; ' Apx),
hlnhQn

where hy, and hs,, are the bandwidths.

For simplifying the notation let h,, :=2-y/h?, + h3, and w.lo.g. let hj,, < 1 for all
n € N, j € {1,2}. Since ming, 1] ¢(x1) > 0, max,, cp1) ¢(x1) < 1, and h, — 0,
we can further assume w.l.o.g. that 0 < h, < ¢(z1) <1— h, < 1foralln e N
and z; € [0,1]. The rotated asymmetric M-kernel estimators m$’ (4, z) are defined
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as zeros of the objective functions H (z;0,z) with
H (z:0,2) = XL a0, 0)u(Z; - 2),

so that . .
m?(0,2) € {zeR:HY(z0,z) =0},

where 1) : R — R is a score function and 04@(2(9, x) are rotated asymmetric Gasser-
Miiller weights
0422(9,@ = KY (0,u — x) du.
Ay

Then, as in Qiu (1997), we define

M,(0,2) = mP0,z)—mP0,z).

It seems plausible that | M, (0, z)| will be close to zero independently of 6 for = €
[h_n, 1-— h_n} ? lying in a smooth region of the regression function, i.e. x5 has an arbi-
trary distance to ¢(x;). But for x lying on the jump location curve, i.e. o = ¢(x7),
|M,,(0,z)] will be close to the jump height C(x;), if the direction described by 6
corresponds with the direction of the tangent of ¢ in x;. Therefore, the jump height
at a point z € [h_n, 1-— h_n} can be estimated by

6n(x) = |Mn(0,(2), 2)]
where 6,(z) is the maximizing angle
O.(x) € argmax |M,(0,x)|.

0e[-%.%]

Note, that 5n () can be used as heuristic criterion for jump detection in more general
models by regarding every point x as jump point, if én(:v) is larger than a certain
threshold value. In our model, the explicit form of the jump location curve enables
us to estimate this curve by maximizing the estimated jump height for every z; in
To-direction, i.e.

On(T1) € argmax 5n <({L’1,I2)T>.

mze[m,l—ﬂ]

Finally, the jump height C'(x) is estimated by inserting the estimated jump location
¢n(x1) into C(x),
Calwr) = Co (1,607

In the following section the consistency of ¢, and C,, is shown.
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3 Consistency results

Although the design points do not have to be equidistant, they must fulfill at least
asymptotically a certain regularity:
Let A = {A;,1 <i <n} be a partition of [0, 1] x [0, 1] with

(B1) z; € A;fori=1,...,nand | JA; =[0,1] x [0,1], Ay N A; =0 for i # j,
i=1
N L —1/2 N o —1-\ .
(B2) D, := max d; = O (n~"/?) and 1121{92}%‘3<A’) 1/n| =0 (n™'"*) with X > 0,

1<i<n <i<
where d; = sup, zca {||2 — 7|} is the diameter and S(A;) is the area of A,

Obviously equidistant design points fulfill these conditions for arbitrary n.
Moreover, let 1(z) : R — R be a score function which fulfill

(C1) 1 is monotone, antisymmetric about the origin, and Lipschitz-continous with
Lipschitz-constant C'y,

(C2) EY(Z; — z) < oo for any fixed z,

(C3) 1 is differentiable with ¢'(0) > 0.

Note, that (C3) implies that ¢ is strictly monotone in an environment of 0.

Further, let hy, and ho, denote the — not necessarily equal — bandwidths which fulfill

(D1) hj, — 0 for n — oo, j € {1,2},
(D2) there exists a p with p > p > 4 and « > 0 with

hi, + b3,

11
I—=—®p2 712
n+ p h‘lnhQn

— 0 for n — oo,

hin
(D3) 0 < ¢:= lim —* < oo

n—oo 2n

Condition (D1) is classical in the theory of kernel estimators, ensuring that the
estimation becomes more and more local. (D2) replaces the classical condition
nh, — oo, what means, that the estimate is based on more and more observa-
tions although the windows becomes smaller. The last condition is needed to avoid
that the support of the kernels become arbitrary narrow. Note for further use, that

(D2) implies /nhj, — oo and \/nhj, — oo.
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Consistency at the borders cannot be expected, but on [h_n, 1— h_n] the following
two theorems show even uniform consistency.

Theorem 1 For every e > 0, § > 0 there exists N € N so that for all n > N we
have

P (supme[m,km Co(21) — C(1)] > 5) <e

Theorem 2 For every e > 0, § > 0 there exists N € N so that for all n > N we
have

P (supxle[a’l_m] On(1) — O(21)| > 5) < €.

The proofs of these theorems are based on some lemmas. At first, we need that
the objective functions HY )(z; 0,z) (7 = 1,2) converge to certain limit-functions
0,
depends on the proportion of weights belonging to observations on each side of the
jump curve. Therefore, for j € {1,2}, we define the set of indices belonging to

observations lying below the jump curve J,, := {1 < i < n:xy < ¢(xy;)}. With the

(z) which, in general, are mixtures of two functions. The ratio of these mixtures

corresponding sums of weights
Nb(@) = Ty, oh(6,2),
we then define the limit functions

By ule) = [ 0l=2) N0 = ) + (1= ALy @) = ) = )]

Note, that h,(f; éz(z) are no “real” limit functions, since they still depend on n. The

convergence of HY )(2; 0, ) is shown by the following two lemmas:

Lemma 1 For all compact subsets Z = [z, zr]| CR, € >0, >0, and j € {1,2}
there exists N € N so that for alln > N we have

P(supzezyge[,gyg H}Lj)(z;H,m) — EHT(Lj)(z;Q,x)) > 5) <.

v€[fn 1-Tm ]

Lemma 2 For alle >0, >0, and j € {1,2} there exists N € N so that for all
n > N we have

P<Supzem,ee[_g,%] E'Héj)(z; 0,z) — hfféx(z)‘ > §> < €.

w€[n 1-Tp |2



Independently of x and 6, all zeros of HY )(z;Q,x) lie between the lower and the
upper part of the regression function. Moreover, for z lying below the jump curve,
both limit functions are zero for z = m(x) and for those x lying above the jump
curve they vanish for z = m(z) + C(xz1).

Lemma 3 With L, := [~2, %] x [T, 1= |, L9, := {(6,2) € Ly, with A\V)(x) =

202
0} and L}, = {(0,z) € L,, with /\gé(x) = 1} we have that for all e >0, 6 > 0, and
j € {1,2} there exists N € N so that for alln > N we have

(i) P (m,&ﬂ(e,x) e <fﬁ(x) — 6, () + Cz) + 5) V(0,7) € Ln> >1-e
(i) P <m,(1j)(9,x) € (ﬁ@(x) —o,m(z) + 5) V(0,z) € L}n> >1—e and
P <m,(1j)(9,x) e (m(x)+0(x1>—5,m(x)+c<x1)+a) Y(0,2) € Lg{n) 1

This lemma already implies that the estimated jump height cannot be larger than
the true jump height with high probability.

To show that it even cannot be too small, we need convergence of hff; Z,x(z) on the

jump curve to a “real” limit function h((,{ i(z) which is independent of n. Therefore,

with ¢ from Condition (D3), @ := ( o ?), and j € {1,2} let
va

J90,2) = {z e {1,....n}:al(0,2) # o}

T = {zeR?:3e[-3,5],je{1,2} with K;(Agz) # 0}
Ay = {ueT uy <¢(z)u}
( 1 T2 < (71)
A (2) = QT A)du a2 = 9lan)
0 2 > (1)

\

MME) = fuln—2) A @) (= ()

+(1 = AP (@) f (= ix) — C(a)) | dp.

Lemma 4 For all 6 >0 and j € {1,2} there exists N € N with

sup |h)o(2) = hi(z)| <9
z€R, 0€[- 5, %] v ’
x1€[0,1]

for all n > N with ¥ := (z1, ¢(x1)) .



4 Comparisons and applications

To demonstrate the convergence of the robust Rotational Difference M-Kernel Es-
timator (RDMKE) also in cases where the assumptions for the distribution of the
error term are violated, we applied the RDMKE with two different score functions
1) to images with different sample sizes which are blurred by 30% outliers.

We use ¢(z1) = 0.3-sin (27x1)+0.5 and C'(z1) = 0.5-(log(10-z1+1)+2) as jump curve

and height (Figure 5) and m(z) = ¢o2(1) - @o.2(z2) as smooth part of the image,

where ¢, (t) = % e~t°/27°

— . The resulting original image m(x) is shown in Figure 6.

Figure 5: Jump curve ¢(z1) (left) and
jump height C(x1) (right)

Figure 6: original image m(x)

To show the convergence, observations Z; coming from the true image m overlaid
by a “30% salt and pepper noise” are generated for sample sizes n = 302, n = 502,
n = 100%, and n = 200% at equidistant design points x; = (z1;, %) € [0,1] x [0, 1].
That means, every observation Z; has with probability 0.7 the true value of the image
at the corresponding design point z; and with probability 0.3 a uniformly distributed
value within the range of the true image, denoted by D = [O, maX,e(o,1]2 m(x)} . The
according generated images are shown in Figures 7.

Figure 7: Noisy images for n = 30, n = 502, n = 100%, and n = 2002

To each of these images we applied the RDMKE with the identity as first, unbounded
score function 1 and the negative derivative of the density of the standard normal
distribution as second, bounded score function. In the former case the M-kernel
estimator becomes an ordinary non robust kernel estimator. In the latter case the
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maximization is computed by the Newton-Raphson method with the median as
starting value.

The computation can be strongly simplified since, in the case of equidistant de-
sign points, results hardly change by using Nadaraya-Watson weights instead of
Gasser-Miiller Weights (see, for example, FEubank, 1988). This means that the
p1ecew1se integrals o G )(9 x) can be substituted by the Nadaraya-Watson weights
K90, 2 —2)/30, K,(f (6,7, — x). Note that Condition (A2), which is usual for
Gasser-Miiller kernels, is mainly needed for having the weights summing to one (com-
pare Lemma 5.v in the appendix) what obviously is also fulfilled by the Nadaraya-
Watson weights. Thus, this condition is not necessary anymore.

The kernels used were the products of two one-dimensional Gaussian kernels
Ki(x) = K[ . ](:El) - K_10)(22) and Ky(x) = K[_;71]( 1) - Kpaj(we) with o =

11 :
272 —
2 = —
o7 Lja4(t). The bandwidths were hy,, = ho, % s

where Kiq)(t) =

o2
At first, for every pixel x; with sufficient distance to the margins, the maximal jump
height C,,(z;) = MaXye[ =z =] | M, (0, x;)| was determined by calculating M, (6, x;)
for 1000 equidistant angles 0, [—
On(z1;) € argmaxlgjgnC (:vh,xQJ

Cn(z1:) = én ((1'11‘, P (iUlz))T)

The plotted results for ¢, (z1;) and C,,(x1;) are shown in Figures 8-11, while Tables 1
and 2 show the means of the absolute and quadratic distances of the estimates to

%} Then, for every xy;, we got ¢, (z1;) as

s
27
T) and C,(xy;) by inserting the jump curve,

the true values.

absolute distance quadratic distance

v/ || unbounded ¢ bounded ¢ | unbounded ¢ bounded ¥
30 || 0.1205 0.1341 0.0441 0.0439
50 || 0.1333 0.0704 0.0488 0.0225
100 || 0.0303 0.0086 0.0086 0.0002
200 || 0.0147 0.0034 0.0042 0.0000

Table 1: Mean of the absolute and quadratic distances of the estimates ¢, (21;) to the true values

¢($1i)

Note that, for both score functions, the estimated jump curve ¢, converges very
clearly to the true jump curve ¢, while the robust version is much better already for
n = 1002 than the unrobust version is for n = 200% (see Table 1 and Figures 8 and 9).
Concerning the jump height C', only the robust version converges (see Table 2 and
Figure 11), while the unrobust version seems to underestimate systematically the
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absolute distance quadratic distance
v/n || unbounded 1) bounded v | unbounded ¢ bounded 1

30 || 0.6924 1.9941 0.6181 4.2532
50 || 0.2864 1.1455 0.1285 2.0515
100 || 0.2713 0.2847 0.1062 0.1266
200 || 0.4807 0.1546 0.2509 0.0322

Table 2: Mean of the absolute and quadratic distances of the estimates C,, (x1;) to the true values

C(JCU)

0 02 04 08 08 10 0 02 04 0s 08 10 0 02 0s 05 08 10 0 02 0s 05 08 10

Figure 8: ¢, (z1;) for n = 302, n = 502, n = 1002, n = 2002, and unbounded score function

0 02 04 08 08 10 0w 02 04 08 0 10

Figure 9: ¢, (z1;) for n = 302, n = 502, n = 1002, n = 2002, and bounded score function

true jump height for large sample sizes, although the jump curve is estimated well
(see Figures 8 and 10). This can be explained by the special form of the noise used
which is not additive but independent of the true pixel value. Therefore, the mean
of the disturbed pixels is equal at both sides of the jump curve and consequently,
the means of the observations within the windows get closer to each other even if the
windows are on different sides of the jump curve. This way, with an amount of 30%
disturbed pixels, the original pixels have only an influence of 70% to the estimation,
so that the estimated jump height will be reduced to 70% of the true jump height.
The robust estimator is less influenced by the outliers so that the jump height can be
correctly estimated after all. The effect that both estimators overestimate the jump
height for small sample sizes is a result of the maximization process: For z on the
true jump curve and @ describing the direction of this curve in x, the jump height
can already be estimated by |[M, (0, z)| (see Theorem 1). Therefore it is obvious,
that C,, which maximizes |M, (0, x)| over 6 and x5 converges from above.
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Figure 10: C,(xy;) for n = 302, n = 502, n = 100%, n = 2002, and unbounded score

function

i

5 o8 10 0 0z 04 o8 08 10

Figure 11: C,,(x1;) for n = 30%, n = 502, n = 1002, n = 2002, and bounded score function

Appendix: Proofs

The following lemma gives some properties of the design points and the kernels and

weights.
Lemma 5 For j € {1,2} we have

(i) ||lz; — || = O (h_n) and |z1; — x1| = O (h_n) for all 6 € [—g,%}, x € 0,13
neN, andi € J,S”(e,x),
(i) S(A) =0 (2) and ﬁ = O(n),

7

x€[0,1]
(iv) T C [~2,2,

(v) Zie]ff)(e,x) ozg?g(ﬁ,x) =1 foralde[-Z,2], 2 € [h,,1— h_nf and n € N,

(vi) SUPse|-5 ] 0452(9795) =0 <nh1ih2n)’

x€([0,1]
. P . p
(i) | (K 0.2)) = (K£(0.5))"| < Cror b - llo = | and
in 2n

580 (0.2) ~ K (0,2)| < gl (fr| + |aa]) - |0 — ]
forall9,6 € [-2,%], 2,7 € R? and p,n € N,

13



S|

(viii) sup oel-z.3
ze[m,lfﬁ

f (KT(Lj)(Q, u)>2 du

-0 (h’%n+h%n>
nhlnth ’

s (af60.2))

h2, +h2
=0 ( nh? h22">

]2

and sup  ge[-z T
me[)zn 1—hn ]

Proof

(i,ii,vi) Follow from Condition (B1) and (B2).

(iii) With
AP0, 2) = {u € [0,1)? K(j)(Q u—x) # O} and
A90,2) = Up, (Aﬁ?(@,x))
we have

A/'gz])(eax) - [wl_h_n_Dna I1+h_n+Dn} X [xZ_h_n_Dn7 x2+h_n+Dn]

forallg € [-%,%] and z € [0,1]%. Forz' € Jj)(e x) we have AiﬂA%j)(@,x) #

() and therefore | J, o 5 Qi C AY (9 z) forall§ € [-%,%] and z € [0,1]2.
From #J3 (6, z) = ZZEJ ) (0.2) ggig O(n)-S (UieJﬁj)(e’x) Ai> the claim
follows.

(iv) Follows from Condition (A1l).
(v) Follows from Condition (A2).
(vii) Follows from the Lipschitz-continuity of Kj.

(viii) With (ii) and (vii) we have

n . 2 1 ,
sup Z (a%(@,x)) - —/(Kq(f)(@,u))Qdu
oe-3.3] |55 n
o€[fn ,1— i |2 !
2
= sup Z K90, u—x)du | — - / (KT(LJ)(H, u—=x)) du
v<l-5 3] 2 icdP0.0) \A; A

zG[E,lfﬁ
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< s > S(A) sw [(KD0.6 - 2) = (KO0, - )|
-5.% - G EA;
ze?%,k%}Q i€ (0.2) S
1 .
+S(A) | S(A) = =| sup (KD, ¢~ )
N Gen;
o2 1 ¢, ¢y e I ()
< _O % 7 79 19
S SR Y T o 16— Gl S

e 70
-’L‘E[E,I—Tn}Q ’LGJn] (0,(11)

_ o Mat i,
nht i, )

: . (7) 2 1
The second claim follows with [ (Kn C2 u)> du =0 < )

hlnh2n

Proof of Lemma 1  With p from Condition (D2) and & := ei]l{lei|<i1/f,}, Z;

m(x;) + €, we have for every 6 > 0

P (Supzez,ge[_%7% Hflj)(z; 0,x) — EH,sj)(z; 9,1:)‘ > 6)
h ]

z€[hn ,1—hn

< P(S” +52n+5§ﬂn>5) <P(5<f >6/3)+P< 2n>5/3>+P< >5/3)
with

S&)L '= SUP.cz0c[-5.5] | Dore 1a (0 :B)(@D(Zi—z)—w(Z—z))‘
w€[hn 1= Tn |2

S = supcsuet 1) |Sis 0a0,2) (v (Z - 2) - B (4 (Zi - 2)) )]
w€[hn 1= Tn |2

S§h 1= SWpcanelg.5) | Simy 0l(6,0) (B (¢ (Zi - 2)) - E( (Zi—2) ).

z€[hn ,1— hp |

We now show the convergence of Sljz, Séjn, and Séjz

Sg,)l :With Lemma 5.vi we have

S < sup uepgg Sor al)(0,2)Cy e — &

>
ce[fn 1 hn)?

0 <7Zh1711h2n> hmmﬂoo 221 |6i - E_z’

IN
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With Markov’s inequality we get P (|e; — €] > 0) = P (|e;| > i'/?) < % < 2%

and since p > p, it follows Y -2, P (le; — &| > 0) < oc.

Therefore with the Borel-Cantelli Lemma we get
P <1im7Hoo SWL = 0) > P(lim, ooy iy & — &l < 00)

> P (Uzozl miZnﬂEi _E_i‘ = 0}) =L

Séj,)l :We split SSJ,)L into three parts, Séj,l < T1(72 + Tz(j,z + T ?Ejrz, with

o= s 2 [el0.00 (- 2) - a0 @) (7 - ule) | ‘
z€Z,0€ 7g,g ._
eefma 2

) = swo S al(H0) (@) [ (Z —u(=) - B (¢ (Zi - u(2) ] ‘
z€2,0€[-5.5] |,
we[fn 1= |2

L = _swo 3 D) (t0),7(0)) E (¢ (Zi — () — al)(0,2)E (v (Z; - 2)) |
z€2,0€[-5.5

z€[hn ,1— hn
where, for a from Condition (D2),

t(0) € T,:={Lm — ke {0,..., [n/4]}} with  [t(0) — 6] < ;2n

T .
@) € Ru={ (e ) R L€ {0 Y] with (o) = ol < Gl

U(Z)EUn3:{ZL+n%(ZR—ZL);/{J€{0,...,Lnaj}} with |U(Z)—Z| < ZRZZL

f— 2na

for all 0, z, and z.

With the Lipschitz-continuity of ¢» and with ¥(0) = 0 we have

sup ¢ (Z; —u(2))| = sup [¢(Z; — u(2)) = 1(0)| < sup Cy [m(z;) + &G — u(2)]

ZEZ zEZ ZEZ

< Cy (‘mjx {m(z)} +4'/?

+ ’ZL| + |ZR‘> =0 (nl/ﬁ) (2)
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a0, x) — al)(t(0),r(x))

i\n

-0 (l—l > and since

1/4p2 p2
nn / hlnth

ozEQ(G,x) - oz(.j)(t(ﬁ), r(x))’ =0fori¢ Jr(Lj)(Q,x) U JT(Lj)(t(Q),r(x)) it follows

in

Tl(Jrz < sup Zoz”@m( —z)—q/;(Z—u(z))) +

z,0,x

n

sup (3 (a¥)(6,2) — o) (1(0),1(2)) )& (Z = u(2) ‘

z,0,x i—1

< su a; H:EC z—u(z)| +
< 298; )Cy | ()]
sup > al)(0,7) = al(t(0), r(@))| - |0 (Z: = u(2))]
T eI (0.0)0I9) (4(6) ()
ZR— 2L ) L R WY
< I RID00) + #ID00)r0) O (3o ) -0 (1)

1 2 2
_ O( >+O<u>ﬁo,
n ni Ph2h2

Since also sup |Ev ( Z; — u(z))| = O (nl/ﬁ) the same result holds for T:)EQ
2€Z

Since v? is Lipschitz-continous on Z we have as in (2) sup,cz ‘1/)2 (Z— z)| =

@] ( 1/”) and therefore sup E? ( ; z) =0 (nl/ﬁ).
Now we have with Lemma 5.viii

SUP ez, 0e[- T, 1] Var <ZZ 1@ (9 I)@/}( ) Z))

w€[fn ,1— i |2
<Swuzm~4§Ll@$WwD(EW( —2)) <0 () 0 (n7)
z€[hn ,1—hn |

and therefore,

P <T2(],3 > 5/9)

n

> ol (¢ (Zi-w) ~ B (Z—u)))

=1

- P<3teTn,r€Rn,uEUn:

> 5/9>

17



IN

5 (|3 ott (6 (B ) - (0 @ - )

Var (Z?:l aﬁfﬁ(ta ) (Zi - u)>
(6/9)

>5/9>

=1

IA

1/4 (174 2 ([ . h%n + h%n . 1/p
(/" +1)-(n""+1)°- (n*+1)-0 55 O (n'/?)
nhlnh2n

IA

Finally, there exists N € N, so that for all n > N we have
P(SY) > §/3) < P(TY) > 6/9) + P(T3) > §/9) + P(T{)) > §/9) < &

(.7) : L -1 .p1 1 .—p1 .
83, :Since |e| > i7 & |gP7 > i 7 & |gPT -0 7 > 1it follows that

E|ei—Ei|:/ 1|ei|dP(ei)§/ i |ePdP(e) < i - Elel?
les|>iP le;|>iP

and n n
ZE|€¢ —&l < Zn_%E le1]? = nvE 1P < nt/*M =0 (n1/4) .
i=1 i=1

Therefore, we have

P < 0 (ki) Wz S B |0 (Zi— 2) = v (Zi = 2)]

T -

and the claim follows.

Proof of Lemma 2 With Lemma 5.i and 5.v we have for all z € R, 0 € [—g, g}
and x € [h_n,l— h_n]

EHD(2:0,2) = h) ,(2)

= [Sies, all.2) [ 0l = 2) e — mai)dut
azgij)af>0:rlfw F = m(a:)dp
“NI)(@) [ — =) f(p — ) dp
—(1 = A(@)) [ o(u — 2) f(p— () — C(a1))dp

18



=[S, 00,0 f [0+ ) = 2) = i+ le) - 2)] f(0)dp

+ X al0.9) [ [+ () + Cla) - 2)

w9 >p(214)

(i) + Clar) = )| F)du

< ZiEﬁ%§<9vz> oi)(0, ) [ CyCrllw: — || (12)dpe

+ZZEJS;(W; 2(0,2) [ Cy[Cllzs — al| + Colay — 21 |] f(u)dpe
< C-Yr a0,2)- [ f(u)dp- O (hy)
- 0(h)—0

with C' = Cy(Cw + C¢) independent of § and . Therefore the claim follows.

Proof of Lemma 3 First, let h(z) := [¢(p (u)dp and € > 0 and § > 0 be
arbitrary. Since 1 is monotone 1ncrea81ng, h is monotone decreasing. The symmetry
of f and the strict monotony in 0 and the antisymmetry of ¢ imply h(0) = 0 and
the existence of a ¢ > 0 with h(z) < —¢’ for z > § and h(z) > ¢’ for z < —4. Since

W) (2) = A (@)h(z —m(z) + (1= Ay(@))h(z — m(z) — C(z1))  (3)

it follows, that

h;{;@(m(x) + C(zy) +6) = Agg(x)h(O(xl) +0)+ (1 =AY @)h(©) < -¢
foralln € N, (0,2) € L

A A -1
Let M,(f)(e,x) = {z eR: H,s])(Z' 0,z) = 0} = (H(])> (0;0, ), that means
mg)(Q,x) € Mﬁ?(e,@ With K; also the Welghts a; ‘7)(0 x) are nonnegative and

therefore the monotony of ¢ implies that gy (z, 0, x) is monotone decreasing in z.
Since 1) is even striotly monotone in an environment of 0 there exist real numbers
Ml(jnea: and M 0. With HY (z;@,x) > 0 for z < Ml(,];z;e,x and H,(Lj)(z;e,x) <0
for z > MZ(QM Since HY )(z 0,x) is continuous this implies the existence of a

z(()nm € R with HY <20n9x,8 x) = 0.
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Now, define a¥) = sup{z € R : H}Lj)(z;ﬁ,x) > 0} and bn = inf{z € R :

n;6,x

HY(2;0,) < 0}. Obviously, these fulfill o), , < =5, <8, and (a,,.0%,, ) ©

0,n;0,z n;0,x n;0,x° “n;0,x

MP (6, 2) C [a(j) b } . But since MY (6, z) is the inverse image of the compact

n;0,x7 “n;0,x

set {0} and Hﬁj)(z; 0, x) is continuous, it follows that Mg)(ﬁ,x) = [a(j) bY) ]

n;0,x7 “n;0,x

Since the set Z := [mingep2{m(z) — 0}, max,e12{m(z) + C(z1) + 6}] is com-
pact, with Lemma 1 and 2 there exists N € N with

P (3(9, 2) € Ly : mP0,2) ¢ (fﬁ(x) — 8, m(x) + Clx1) + 5))

< p (3(9,1«) €L, : a¥), < m(x) - 5) +
P (a(e,x) € Ly b9}, > fi(x) + Clar) + 5)
< P (3(0,x) € Ly, : HY (m(x) — 6;0,2) < 0) +

P (3(9, )€ Ly HY (f(z) + C(x1) + 6,0, 2) > o)

IN
i)
—~
S
B
2
m
h

3

. HY (i) — 6,0, 2) — b9} ((z) — 6) < _5') n

P(3(0,2) € L, : HY (m(z) + C(x1) + 6;0,2) — hY), _(m(z) + C(z1) + 6) > 5')

n,0,x
< 2-P | Sup.czocl-3.3 Hﬁj)(z;e,x) — hg,)e,x(z) > ¢
c€[hn 1-Fn)?
< €
for all n > N.

We get (ii) in the same way, taking note of the fact that in (3) for /\g)e(x) =1
we havg h%x(z) = h(z — m(z)) and consequently hif)ex(ﬁ%(x) —0) = h(=06) > ¢
and h%m(ﬁz(x) +6) = h(§) < =& for alln € N, (6,z) € L}, and j = {1,2}.
Analogously, for )\%(Q;) = 0 we have h%’z(z) = h(z — m(z) — C(x1)), so that

]7”7

hY) ((z) + C(ay) — 8) = h(=0) > & and hY) (f(x) + C(x1) + 8) = h(5) < —&'
for all n € N, (f,z) € L}, and j = {1,2}.
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Before we can show the convergence of hn 0 x(z) we need the following asymptotic

behavior of Ag)a(x):

Lemma 6 For j € {1,2} we have

SUPge[-3.3 f K9(0,u - z)du

z€lo, 1]2

- O (\/ﬁhinh}n) '

Proof Let A, = U, A AY = {u e [0,1>: Vi € A: |lu—1|| > D,}, and
AP = {u e [0,12: Fu € A® : |ju—T|| < D,}. Obviously AV c AC c AP
As well we have AV ¢ A, C Ag), since for any u € [0,1]? there exists 1 <i < n
with u € A;, what means ||u — 2;]] < D,. For u € A we have z; € AC for
this 7, what means ¢ € J, and therefore u € A,. For u € A, we have i € J,

respectively and therefore z; € A, what means u € AP, Consequently, we have
S (A, AAC) < S(AD\ AD).

Further, for u € A® and suitable @ € A€ we have
uy < Uy + Dy, < @(t1) + Dy, < @) +£r£[%}1<] 1" (€)| - [y — ur| + Dy, < ¢(uy) +C - D,,.

Since AY) ¢ A we have uy < o(uq) for u € Ag), and therefore
S (ADN AV < [Hd(ur) +C - D) — ¢(uy)duy = C - D, = O (%)

This implies

SUPsel-3.3 )\(J fK(j (0,u — x)du

= SUPoe[-3.7] hmlhzn f K;j(H;'Ag(u — x))du — —— f K;(H,;'Ap(u — x))du

Finhan
z€(0, 1]2 inhan

IN

hlnth S (A AAC) maxxe[(),l]a |KJ(I’)| = O <m> .

Proof of Lemma 4  First, we show the convergence of /\gé(f) to )\éj)(f).
With Lemma 6 we have

Supac(-3.5) [ALH(E) = A @)
x1€[0,1]
= SUDee[-5.5] m [ K;(H;'Ag(u —T))du — [ K;(Q ' Agu)du
z1€[0,1] AC Az,

1
+O (\/EhlnhQn )
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Kj('d)d’d— f Kj(ﬂ)dﬂ
Hy ' Ag(AC—F)NT Q~1Ag(Azy)NT

= SUPscfz.g]
z1€[0,1]

+ O (\/ﬁhilnh?n >

— 0,
since supy ,, S((HglAg (A° —T) ﬂT)A(Q‘lAg(Axl)OTD — 0, what can be shown
as follows:
Let T1(0,x1) := ¢'(x1) cos (—0) —sin (—0) and T5(0, x1) := ¢'(x1) sin (—0)+cos (—0) .
Since T1(0, z1)? + To(0, 21)? = ¢/(x1)*+1 > 1, we have for all 0, z that |T1(6,x,)| >
to or |Ty(0,z1)| > to where tg = \/g . Further, there exists Cr independent of 6 and
x1 with |T1(0,z1)| < Cr and |T3(0, x1)| < Cr for all  and z;.

With Ay ' = A_y and with the Taylor-expansion of ¢ in z; we have on the one hand

ue H'Ag (A° = 2) & Ay Hyu+ T € AY & ay_gHyu+ ¢(a1) < ¢la)_gHyu + 1)
< Th(0,x1)us < 1" T1(9 x1)ug + O < =2+ hy, + h2n> and on the other hand

ue Q 1Ay(Ay) & Ae_lQu € Ay, & ay ,Qu < ¢ (z1)a]_,Qu
= TQ(@,,Il)U,Q < qT1(0,$1)u1.

For u € (H,'Ag (A° — T) \ Q' 49(A,,)) NT we have consequently

h
qT1(0,21)uy < To(0, 21)us < h;Tl(e w1)uy + O(hip + hay). (4)

2n

If now |T%(6,x1)| > to holds, this implies

T1(9,$1)

hln T1 (9, IL‘l) ()(hln + hgn)
. 7 < =
qTQ(Q,Il)UI <

< U +
hon, T2(97$1) ! T2(‘9,$1)

for T5(0, 1) > 0

T1(9,$1)

@Tﬂe,%) O(h1n + han)
T2(9,$1)

> >
U1l U9 Uq TQ(Q, 1‘1>

for T5(0
T hoy T5(8,4) or T(6,71) <0

q

and with Lemma 5.iv we get

SUD e[-7.3 S((H LAy (A9 —2) \ Q71 4g(Asy)) N T>

z1 €0, 1]
[T2(0,21)|>t0
2
hln |Tl(9 x] | O(hln“l‘th
S SUD sel-3 5% £ han TOo U T hEe 9
z1 €

[T2(0,21)| >t

hin _
h2n q

IN

i

CT + (h1n+h2n)> N O
to
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But if |71(0, x1)| > to holds, we similarly get the same result. Moreover, (4) holds
for u € (Q7tAg(As,) \ Hy'Ag (AY — %) ) N'T with changed signs, so that we also
have supe|-z.3] S((Q_IAQ(AxI) \ H,'Ag (A =) ) N T) — 0 what means, that

z1€[0,1]
also

supge[,%,g] S ((HJIAQ (AC — f) N T)A(QflAg(Am) N T)) — 0.

z1 €[0,1]

Now, we get

Ay a(2) — hM(2)|

SUup .er, oc[-%

5.5l
z1€[0,1]

S SUD.cr.oe[-5.3]
z1€[0,1]

\f w(u -2+ m(@)f(u)du - fw(u — 2+ m(T) + C(x1)>f(u)d,u‘

NVOEPYIG]

AL(@) = AP (@) - Co - max | Can)| - | [ fow)du] — 0.

< SUpPee[-17.7]
z1€[0,1]

Proof of Theorem 1 For 1 € [h,,1 — h,] let first 0(z) := — arctan(¢/(z1)).

Since arctan(¢/(z1)) € (55, %) and therefore cos (5(1‘1)) > 0 we have for all u €

TN (Al«l)C (eg U > ¢/($1)U1)

a;rg(xl)u > [sin (0(m1)> + ¢/ (1) cos (5@1))} Uy
= [tan (5(:1:1)> +¢’(:1:1)] cos (5(931)> uy = 0.

————
=—¢'(z1)
With Condition (A1) that implies K <Q*1A§(m)u> =0forallu € TN(A,, ). But

for u ¢ T we also have K (QilAg(m)u> = 0 and therefore, with ¥ := (z1, ¢(z1))",
we have

A0 (F) - [r (@1 Ag, ) du = RS (@A) du =1

what implies
WY () = [(n— 2)f(p— W(E))dp

ml)z

for all z; € [h_n,l— h_n}
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With the same arguments as in the proof of Lemma 3 we get
P (Elxl € [ 1= ]+ m® (’é(xl),sz) ¢ (m(:a 5, () +5)) <e
for all n > N; what implies
P (mgU (5@1)@) e (m(f) — 5, () +5) Yy € [T 1— h_nD >1—e
Analogously we get )\g(il)(f) =0 and

P(mg? (5<x1), 5) c (m@) 4 C(x) — 6, (F) + Cla) + 5)

Vo€ [ 1= Ta]) > 1-c
for all n > N, what implies

P (‘Mn (5(%),%)‘ € (C(z1) —26,C(x1) +26) Vay € [hy, 1 — h_nD >1—e.

Finally, we have

Cn(z1) =  max max |Mn(9, (xl,xg)T)‘ > ‘Mn (g(xl),f)

a1 ] 0] 3.1

Y

forall n > Ny and z; € [h_n, 1-— h_n} what implies
P(Cn(xl) > C(z1) — 20 Yy € R, 1— Ty | ) S

for all n > N;. But since also Z,, := (71, ¢, (21))" € [h_n, 1— h_nf, with Lemma 3.1
there exists as well Ny € N with

P(Cn(xl) < Clx1) +26Yay € [y, 1— ] )
> p (mgﬂ(en@n), 7)€ (m(gn) — 8, (Fn) + C(x1) + 5) A

M (0n(Fa), T) € (M(Fa) = 6, 7(Fa) + Clw1) +0) Yay € [h, 1= T ])
> 1—2¢
for all n > Ny. With N := max{N;, N2} the claim is proven.

Proof of Theorem 2 With My := max, co1)|¢'(21)], ¢n = max{hi,, hon}, and
Pn = 2Myq, + 2q, + My D, + D,, let

Al = {(xq,19) € [hn,l— hn}Q:xQZqﬁ(a:l)—i—pn}

A = {1, 10) € [Bn, 1= By " i 0 < (1) — pu}-
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We show, thatforallﬁe[ Z.2],neN, and j € {1, 2}Wehave)\ ( ) =1 for all
xr € A, and )‘n,0< z) =0 for all z € A

First, let x € A, and i ¢ J,,, what means xy; > ¢(x1;). Then, we have for all u € A,;
uy > ¢(x;) — Dy > ¢(uy) — My D,, — Dy, If |uy — 24| < 2g,, we therefore have
Up—x2 > ¢(ur) — My Dy — Dy — (¢(x1) —pp) = ¢ (§u) (w1 — 1) +2Myr g + 245, > 2gy,.
That means we have [lu —z|| > 2g, for all u € A; what implies i ¢ J,SJ)(H,Q:).

Consequently we have Jfﬂ)(é’,a:) C J, forall z € A, and 6 € [—Z,Z], what, with

Lemma 5.v, immediately implies

N(@) = Sies, a(0,2) = X0 0.0 n(0,2) = 1

forall € [-3,Z], z € A, and n € N. )\Sl])e(:c) =0 for 2 € A follows analogously.

With L9, and L}, from Lemma 3.ii we now have [—-3, 5] x A, C L} and [-3,%] x

Af c Ly, for all n € N. Therefore, we get that for all € > 0, > O there exists a
N; € N so that for all n > NV;

P (SupxeA; 5n(x) > 6> =P <sup e !m@(@,x} (1)(9 $)‘ > 5)

T I
0el-%:2

< P (3(9, pyerl, ml¢ (m(x) — 8, m(z) + 5) vm ¢ (m(x) — 8, m(z) + 5))
< €/2
and in the same way P (supxefq Cp(z) > 5) < €/2.

Since Cp(21) = C, ((xl, gzﬁn(xl))T) that implies

P(3z1 € [hy,1 = hy] : Co(z1) >6 A (21, Pn(z1))" € A UAY)  (5)

< P (SUPxeA;uA: Cp(z) > 6) <e€
for all n > N;. Further, we have

P31 € [hy,1— hy| : Culzr) > 6 A (21,00(z1))" € A, UAT)
> P (Cp(z1) > 06V21 € [hy,1— hy]) +
P (31‘1 € [h_n, 1— h_n} : (21, Pn(z1)) " € A, UA:{) — 1. (6)
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Now, w.l.o.g. let € < 5 and § < ming,eo1] C(21)/2. Then, with Theorem 1 there
exists Ny € N with
P(Cn(x1)>6Vx1€ [h_n,l—h_n]) (7)
> 11— P(Elxl € [h_n,l — h_n} 2 Cp(ry) < C(xq) — (5)

Cn(lj) — O(l‘l)

> 1-P (Squle[H,l—H] > (5) >1—c¢

for all n > Ny. (5),(6), and (7) provide
P(3z1 € [hy,1— hy| : (21,00(21))" € A, UAY)
< P31 € [hy,1— hy] 2 Cola1) >0 A (21, 0,(z1))" € A, UAT)
—P (Cy(z1) > V21 € [hy, 1= h,]) +1

< 2e

for all n > max{Ny, No}. Since p, — 0 there exists N3 € N with p, < § for all
n > N3 and therefore we finally get

P (supme[m,l_g] bn(x1) — ¢($1)’ > 5)

< P(E'JJle [h_n,l_h_n} : (xla(bn(xl))—reA;UA;’z—)

< 2e
for all n > N := max{Ny, No, N3}.
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