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Abstract

We use the difference of two asymmetric M-kernel estimators to detect jumps
in two-dimensional regression functions. The method extends and corrects the
Rotational Difference Kernel Estimator method proposed by Qiu (1997). For
regression functions with only one explicit jump curve and additive noise, we
show consistency for the jump location and height. In a simulation study, the
consistency is also demonstrated for the case that 30% of the observations are
replaced by outliers. In this case, the robust M-kernel estimators are superior
to the classical kernel-estimators.
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1 Introduction

Two-dimensional regression functions with discontinuities are used in various fields

of application. For example, meteorological or geological departments have observa-

tions from fixed gauging stations, which are used to estimate the border of air layers

or mine surfaces. Another application is the detection of edges in image analysis.

There are global an local methods for detecting discontinuities. Mainly in the theory

of multivariate boundary estimation, which is closely related to edge detection, global

approaches are used. For boundary estimation, observations are assumed to follow

a regression function which is smooth except on the boundary of a region. Referred

to images, estimating this boundary is detecting the edge of an object in the image.

(See, e.g., Korostelev and Tsybakov, 1993). For a global approach see, for example,

Carlstein and Krishnamoorthy (1992). A recent extension of their method is found

in Ferger (2004).

Most considerations about estimation of jump locations in regression surfaces con-

cern edge detection in image analysis where diverse local methods are known. For

example, the so-called filter-methods, which like many others use the fact that the

derivative of the image function becomes very large in the vicinity of edges. Other

methods use statistical tests based on the representation of the image as a Markov

field. See Davis (1975) for an overview about some of the“classical”methods, or Peli

and Malah (1982) for a comparison. For some newer techniques see, for example,

Müller and Song (1994), Qiu and Yandell (1997), or Hou and Koh (2003).

For one-dimensional jump detection, Qiu et al. (1991), Müller (1992), and Wu and

Chu (1993) introduced similar estimators based on the difference of two one-sided

kernel estimates (DKE - Difference Kernel Estimators). In smooth regions of the

regression function, an estimator using only observations on the left side will be

similar to an estimator using only observations on the right side. In contrast, near

jump points, the difference of these two estimates will be close to the jump height

(see Figure 1).

As generalisation of the one-dimensional DKE, Qiu introduced in 1997 the Rota-

tional Difference Kernel Estimators (RDKE), on which the method discussed in this

paper is based. The most important difference between the two-dimensional and the

one-dimensional case is that the distinction between “left” and “right” side has now

to be done along a direction. According to this direction the difference may strongly

vary. If the considered point lies on an edge, differences calculated along that edge

will be close to the jump height, whereas for other directions, the difference may

even vanish (see Figure 2).
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Figure 1: left sided (solid) and right sided
(dashed) one-dimensional kernel estimations
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Figure 2: difference of two asymmetric
two-dimensional kernel estimations

To cope with this problem, Qiu introduced rotated kernel functions. Based on two

asymmetric two-dimensional kernel functions

K∗
1(x1, x2) = 0 for (x1, x2) /∈

[
−1

2
, 1

2

]
× [−1, 0]

K∗
2(x1, x2) = 0 for (x1, x2) /∈

[
−1

2
, 1

2

]
× [0, 1]

he defined rotated kernel functions Kj(θ, x1, x2) = K∗
j (r1(θ, x1, x2), r2(θ, x1, x2)),

where r1 and r2 describe the coordinates of the pixel x> = (x1, x2)
> rotated around

an angle θ. With these kernel functions, asymmetric kernel estimators are defined

as

m(j)
n (θ, x1, x2) =

1

nh1nh2n

n∑
i=1

Kj

(
θ,
x1i − x1

h1n

,
x2i − x2

h2n

)
Zi, (1)

where h1n and h2n are the bandwidths. Then, m
(2)
n (θ, x1, x2)−m

(1)
n (θ, x1, x2) is the

estimated difference between the weighted means of the observations located on the

different sides of (x1, x2) along the direction described by θ.

In practical applications, kernel estimators have the disadvantage of not being ro-

bust. For example, outliers among the observations may have a strong influence

on the estimation. For robust regression estimation, Härdle and Gasser (1984) pro-

posed the M-kernel estimators which are a generalization of the kernel estimators.

In Section 2, a robust estimator for two-dimensional jump regression functions com-

bining the concepts of the M-kernel estimators with those of the RDKE method of

Qiu is introduced. Thereby we correct an essential mistake in the original definitions

for the RDKE introduced by Qiu, which is even restated in a recent modification of

the RDKE (Qiu, 2002): The scaling by the bandwidths h1n and h2n is fundamental

in the theory of kernel estimators (see e.g. Eubank, 1988) and according to the con-

ceptional idea, the rotation should apply to the support of the scaled kernels. But

Qiu applies the rotation after the scaling (see (1)), i.e., the support of the kernels is

first rotated and then scaled. This leads to the effect that the supports are deformed

if the two bandwidths are unequal (see Figure 3). Since this involves a change of

the direction of the line that divides the two kernels, the proofs given by Qiu do
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not hold without substantial changes. Therefore, we introduce new kernel functions,

which do not show this disadvantage (see Figure 4).

θ

h2n

−h2n

h1n−h1n

Figure 3: Domains of the two asymmetric
kernel functions as defined by Qiu (1997)

θ

h2n

−h2n

h1n−h1n

Figure 4: Domains of the two asymmetric
kernel functions used in this paper

As in Qiu (1997), we introduce estimators for the jump curve φ and jump height C

for regression functions of the form

m(x) = m̃(x) + C(x1)1A(x) with A :=
{
x ∈ [0, 1]2 : x2 > φ(x1)

}
,

where m̃ is the (Lipschitz-) continuous part of the regression function. In Section 3,

the uniform consistency of these estimators is presented for the case that the re-

gression function is corrupted by an additive noise. The proofs are given in the

appendix. Since, with the identity as score function, the M-kernel estimator be-

comes the ordinary kernel estimator, our proofs also include Qiu’s RDKE with the

now corrected succession of scaling and rotating. Moreover, Qiu uses a condition on

the (asymptotical) number of observations in a given area, for example, the domains

of the kernels, which is not proven. Since the design points are not required to be

equidistant, this condition does not trivially hold true but needs further assumptions,

which are included in the assumptions given in Section 3.

Section 4 provides a simulation study which shows the consistency also in the case

where 30% of the observations are replaced by outliers. This simulation study

demonstrates clearly the superiority of the RDKE based on robust M-kernel es-

timators to the RDKE based on the classical kernel estimators.
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2 Definitions and assumptions

We consider n observations Zi = m(xi) + εi ∈ R at design points xi = (x1i, x2i)
> ∈

[0, 1]2 (1 ≤ i ≤ n). The residuals εi ∈ R are i.i.d. with symmetric density f : R→ R

and E |εi|p < M <∞ for a p > 4. The regression function is supposed to be of the

form m(x) = m̃(x) + C(x1)1A(x), with A := {x = (x1, x2) ∈ [0, 1]2 : x2 > φ(x1)}.
Let the smooth part of the regression function m̃ : [0, 1]2 → R and the jump curve

C : [0, 1] → R \ {0} be Lipschitz-continous with Lipschitz-constant Cem and CC
respectively and w.l.o.g. let C(x1) > 0. Further, let the jump height φ : [0, 1] →
(0, 1) be two times differentiable. The aim is to estimate the functions φ and C

describing the jump of the regression function.

Let K1(x) and K2(x) be two one-sided, continuous kernel functions which fulfill the

following conditions:

(A1) K1(x) = 0 for x /∈
[
−1

2
, 1

2

]
×[−1, 0] and

K2(x) = 0 for x /∈
[
−1

2
, 1

2

]
× [0, 1]

1

−1

1/2−1/2

(A2)
∫

[−1,1]2
Kj(x)dx = 1, j ∈ {1, 2}

(A3) Kj(x) ≥ 0, j ∈ {1, 2}.
The compact supports and the continuity imply Lipschitz-continuity of the kernel

functions and their powers. Let CKp be the (common) Lipschitz-constant of the p-th

power of K1 and K2.

With a1θ := (cos θ,− sin θ)>, a2θ := (sin θ, cos θ)>, Aθ := (a1θ, a2θ)
> =

(
cos θ
sin θ

− sin θ
cos θ

)
,

and Hn :=
(
h1n

0
0
h2n

)
we define for j ∈ {1, 2} the rotated kernels

K(j)
n (θ, x) :=

1

h1nh2n

Kj(H
−1
n Aθx), θ

h2n

−h2n

h1n−h1n

where h1n and h2n are the bandwidths.

For simplifying the notation let hn := 2 ·
√
h2

1n + h2
2n and w.l.o.g. let hjn <

1
2

for all

n ∈ N, j ∈ {1, 2}. Since minx1∈[0,1] φ(x1) > 0, maxx1∈[0,1] φ(x1) < 1, and hn → 0,

we can further assume w.l.o.g. that 0 < hn < φ(x1) < 1 − hn < 1 for all n ∈ N
and x1 ∈ [0, 1]. The rotated asymmetric M-kernel estimators m

(j)
n (θ, x) are defined
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as zeros of the objective functions H
(j)
n (z; θ, x) with

H
(j)
n (z; θ, x) :=

∑n
i=1 α

(j)
i,n(θ, x)ψ(Zi − z),

so that
m

(j)
n (θ, x) ∈ {z ∈ R : H

(j)
n (z; θ, x) = 0},

where ψ : R→ R is a score function and α
(j)
i,n(θ, x) are rotated asymmetric Gasser-

Müller weights

α
(j)
i,n(θ, x) :=

∫
∆i

K
(j)
n (θ, u− x) du.

Then, as in Qiu (1997), we define

Mn(θ, x) := m
(2)
n (θ, x)−m

(1)
n (θ, x).

It seems plausible that |Mn(θ, x)| will be close to zero independently of θ for x ∈[
hn , 1− hn

]2
lying in a smooth region of the regression function, i.e. x2 has an arbi-

trary distance to φ(x1). But for x lying on the jump location curve, i.e. x2 = φ(x1),

|Mn(θ, x)| will be close to the jump height C(x1), if the direction described by θ

corresponds with the direction of the tangent of φ in x1. Therefore, the jump height

at a point x ∈
[
hn , 1− hn

]
can be estimated by

C̃n(x) = |Mn(θn(x), x)|

where θn(x) is the maximizing angle

θn(x) ∈ argmax
θ∈[−π

2
,π
2 ]
|Mn(θ, x)|.

Note, that C̃n(x) can be used as heuristic criterion for jump detection in more general

models by regarding every point x as jump point, if C̃n(x) is larger than a certain

threshold value. In our model, the explicit form of the jump location curve enables

us to estimate this curve by maximizing the estimated jump height for every x1 in

x2-direction, i.e.

φn(x1) ∈ argmax
x2∈[hn ,1−hn ]

C̃n

(
(x1, x2)

>
)
.

Finally, the jump height C(x1) is estimated by inserting the estimated jump location

φn(x1) into C̃n(x),

Cn(x1) = C̃n

(
(x1, φn(x1))

>
)
.

In the following section the consistency of φn and Cn is shown.

6



3 Consistency results

Although the design points do not have to be equidistant, they must fulfill at least

asymptotically a certain regularity:

Let Λ = {∆i, 1 ≤ i ≤ n} be a partition of [0, 1]× [0, 1] with

(B1) xi ∈ ∆i for i = 1, . . . , n and
n⋃
i=1

∆i = [0, 1]× [0, 1], ∆i ∩∆j = ∅ for i 6= j,

(B2) Dn := max
1≤i≤n

di = O
(
n−1/2

)
and max

1≤i≤n
|S(∆i) − 1/n| = O

(
n−1−λ) with λ > 0,

where di = supx,ex∈∆i
{||x− x̃||} is the diameter and S(∆i) is the area of ∆i.

Obviously equidistant design points fulfill these conditions for arbitrary n.

Moreover, let ψ(z) : R→ R be a score function which fulfill

(C1) ψ is monotone, antisymmetric about the origin, and Lipschitz-continous with

Lipschitz-constant Cψ,

(C2) Eψ(Zi − z) <∞ for any fixed z,

(C3) ψ is differentiable with ψ′(0) > 0.

Note, that (C3) implies that ψ is strictly monotone in an environment of 0.

Further, let h1n and h2n denote the – not necessarily equal – bandwidths which fulfill

(D1) hjn → 0 for n→∞, j ∈ {1, 2},

(D2) there exists a p̃ with p > p̃ > 4 and α > 0 with

h2
1n + h2

2n

n
1
4
− 1ep−αh2

1nh
2
2n

→ 0 for n→∞,

(D3) 0 < q := lim
n→∞

h1n

h2n

< ∞.

Condition (D1) is classical in the theory of kernel estimators, ensuring that the

estimation becomes more and more local. (D2) replaces the classical condition

nhn → ∞, what means, that the estimate is based on more and more observa-

tions although the windows becomes smaller. The last condition is needed to avoid

that the support of the kernels become arbitrary narrow. Note for further use, that

(D2) implies
√
nh4

1n →∞ and
√
nh4

2n →∞.
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Consistency at the borders cannot be expected, but on
[
hn , 1− hn

]
the following

two theorems show even uniform consistency.

Theorem 1 For every ε > 0, δ > 0 there exists N ∈ N so that for all n > N we

have

P
(
supx1∈[hn ,1−hn ] |Cn(x1)− C(x1)| > δ

)
< ε.

Theorem 2 For every ε > 0, δ > 0 there exists N ∈ N so that for all n > N we

have

P
(
supx1∈[hn ,1−hn ]

∣∣∣φn(x1)− φ(x1)
∣∣∣ > δ

)
< ε.

The proofs of these theorems are based on some lemmas. At first, we need that

the objective functions H
(j)
n (z; θ, x) (j = 1, 2) converge to certain limit-functions

h
(j)
n,θ,x(z) which, in general, are mixtures of two functions. The ratio of these mixtures

depends on the proportion of weights belonging to observations on each side of the

jump curve. Therefore, for j ∈ {1, 2}, we define the set of indices belonging to

observations lying below the jump curve Jn := {1 ≤ i ≤ n : x2i ≤ φ(x1i)}. With the

corresponding sums of weights

λ
(j)
n,θ(x) :=

∑
i∈Jn

α
(j)
i,n(θ, x),

we then define the limit functions

h
(j)
n,θ,x(z) :=

∫
ψ(µ−z)

[
λ

(j)
n,θ(x)f(µ− m̃(x)) + (1− λ

(j)
n,θ(x))f(µ− m̃(x)− C(x1))

]
dµ.

Note, that h
(j)
n,θ,x(z) are no “real” limit functions, since they still depend on n. The

convergence of H
(j)
n (z; θ, x) is shown by the following two lemmas:

Lemma 1 For all compact subsets Z = [zL, zR] ⊂ R, ε > 0, δ > 0, and j ∈ {1, 2}
there exists N ∈ N so that for all n > N we have

P
(

sup z∈Z, θ∈[−π
2 , π

2 ]

x∈[ hn ,1−hn ]2

∣∣∣H(j)
n (z; θ, x)− EH

(j)
n (z; θ, x)

∣∣∣ > δ
)
< ε.

Lemma 2 For all ε > 0, δ > 0, and j ∈ {1, 2} there exists N ∈ N so that for all

n > N we have

P
(

sup z∈R, θ∈[−π
2 , π

2 ]

x∈[ hn ,1−hn ]2

∣∣∣EH(j)
n (z; θ, x)− h

(j)
n,θ,x(z)

∣∣∣ > δ
)
< ε.

8



Independently of x and θ, all zeros of H
(j)
n (z; θ, x) lie between the lower and the

upper part of the regression function. Moreover, for x lying below the jump curve,

both limit functions are zero for z = m̃(x) and for those x lying above the jump

curve they vanish for z = m̃(x) + C(x1).

Lemma 3 With Ln :=
[
−π

2
, π

2

]
×
[
hn , 1− hn

]2
, L0

j,n := {(θ, x) ∈ Ln with λ
(j)
n,θ(x) =

0} and L1
j,n := {(θ, x) ∈ Ln with λ

(j)
n,θ(x) = 1} we have that for all ε > 0, δ > 0, and

j ∈ {1, 2} there exists N ∈ N so that for all n > N we have

(i) P
(
m

(j)
n (θ, x) ∈

(
m̃(x)− δ, m̃(x) + C(x1) + δ

)
∀ (θ, x) ∈ Ln

)
> 1− ε.

(ii) P
(
m

(j)
n (θ, x) ∈

(
m̃(x)− δ, m̃(x) + δ

)
∀ (θ, x) ∈ L1

j,n

)
> 1− ε and

P
(
m

(j)
n (θ, x) ∈

(
m̃(x)+C(x1)−δ, m̃(x)+C(x1)+δ

)
∀(θ, x) ∈ L0

j,n

)
> 1− ε.

This lemma already implies that the estimated jump height cannot be larger than

the true jump height with high probability.

To show that it even cannot be too small, we need convergence of h
(j)
n,θ,x(z) on the

jump curve to a “real” limit function h
(j)
θ,x(z) which is independent of n. Therefore,

with q from Condition (D3), Q :=

(
√
q

0
0
1√
q

)
, and j ∈ {1, 2} let

J
(j)
n (θ, x) :=

{
i ∈ {1, . . . , n} : α

(j)
i,n(θ, x) 6= 0

}
T :=

{
x ∈ R2 : ∃θ ∈

[
−π

2
, π

2

]
, j ∈ {1, 2} with Kj(Aθx) 6= 0

}
Ax1 := {u ∈ T : u2 ≤ φ′(x1)u1}

λ
(j)
θ (x) :=


1 x2 < φ(x1)∫
Ax1

Kj(Q
−1Aθu)du x2 = φ(x1)

0 x2 > φ(x1)

h
(j)
θ,x(z) :=

∫
ψ(µ− z)

[
λ

(j)
θ (x)f(µ− m̃(x))

+(1− λ
(j)
θ (x))f(µ− m̃(x)− C(x1))

]
dµ.

Lemma 4 For all δ > 0 and j ∈ {1, 2} there exists N ∈ N with

sup
z∈R, θ∈[−π

2 , π
2 ]

x1∈[0,1]

∣∣∣h(j)
n,θ,ex(z)− h

(j)
θ,ex(z)

∣∣∣ ≤ δ

for all n > N with x̃ := (x1, φ(x1))
>.
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4 Comparisons and applications

To demonstrate the convergence of the robust Rotational Difference M-Kernel Es-

timator (RDMKE) also in cases where the assumptions for the distribution of the

error term are violated, we applied the RDMKE with two different score functions

ψ to images with different sample sizes which are blurred by 30% outliers.

We use φ(x1) = 0.3·sin (2πx1)+0.5 and C(x1) = 0.5·(log(10·x1+1)+2) as jump curve

and height (Figure 5) and m̃(x) = ϕ0.2(x1) · ϕ0.2(x2) as smooth part of the image,

where ϕσ(t) = 1√
2πσ

e−t
2/2σ2

. The resulting original image m(x) is shown in Figure 6.
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2.
2

Figure 5: Jump curve φ(x1) (left) and
jump height C(x1) (right)

Figure 6: original image m(x)

To show the convergence, observations Zi coming from the true image m overlaid

by a “30% salt and pepper noise” are generated for sample sizes n = 302, n = 502,

n = 1002, and n = 2002 at equidistant design points xi = (x1i, x2i) ∈ [0, 1] × [0, 1].

That means, every observation Zi has with probability 0.7 the true value of the image

at the corresponding design point xi and with probability 0.3 a uniformly distributed

value within the range of the true image, denoted by D =
[
0,maxx∈[0,1]2 m(x)

]
. The

according generated images are shown in Figures 7.

Figure 7: Noisy images for n = 302, n = 502, n = 1002, and n = 2002

To each of these images we applied the RDMKE with the identity as first, unbounded

score function ψ and the negative derivative of the density of the standard normal

distribution as second, bounded score function. In the former case the M-kernel

estimator becomes an ordinary non robust kernel estimator. In the latter case the
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maximization is computed by the Newton-Raphson method with the median as

starting value.

The computation can be strongly simplified since, in the case of equidistant de-

sign points, results hardly change by using Nadaraya-Watson weights instead of

Gasser-Müller weights (see, for example, Eubank, 1988). This means that the

piecewise integrals α
(j)
i,n(θ, x) can be substituted by the Nadaraya-Watson weights

K
(j)
n (θ, xi − x)/

∑n
l=1K

(j)
n (θ, xl − x). Note that Condition (A2), which is usual for

Gasser-Müller kernels, is mainly needed for having the weights summing to one (com-

pare Lemma 5.v in the appendix) what obviously is also fulfilled by the Nadaraya-

Watson weights. Thus, this condition is not necessary anymore.

The kernels used were the products of two one-dimensional Gaussian kernels

K1(x) = K[− 1
2
, 1
2 ]

(x1) · K[−1,0](x2) and K2(x) = K[− 1
2
, 1
2 ]

(x1) · K[0,1](x2) with σ = 1
2
,

where K[a,b](t) = 1
σ
√

2π
· e−

t2

2σ2 · 1[a,b](t). The bandwidths were h1n = h2n = 1
5
n−

1
4 .

At first, for every pixel xi with sufficient distance to the margins, the maximal jump

height C̃n(xi) = maxθ∈[−π
2
,π
2 ]
|Mn(θ, xi)| was determined by calculating Mn(θ, xi)

for 1000 equidistant angles θj ∈
[
−π

2
, π

2

]
. Then, for every x1i, we got φn(x1i) as

φn(x1i) ∈ argmax1≤j≤nC̃n
(
(x1i, x2j)

>) and Cn(x1i) by inserting the jump curve,

Cn(x1i) = C̃n

(
(x1i, φn (x1i))

>
)
.

The plotted results for φn(x1i) and Cn(x1i) are shown in Figures 8–11, while Tables 1

and 2 show the means of the absolute and quadratic distances of the estimates to

the true values.

absolute distance quadratic distance√
n unbounded ψ bounded ψ unbounded ψ bounded ψ

30 0.1205 0.1341 0.0441 0.0439

50 0.1333 0.0704 0.0488 0.0225

100 0.0303 0.0086 0.0086 0.0002

200 0.0147 0.0034 0.0042 0.0000

Table 1: Mean of the absolute and quadratic distances of the estimates φn(x1i) to the true values
φ(x1i)

Note that, for both score functions, the estimated jump curve φn converges very

clearly to the true jump curve φ, while the robust version is much better already for

n = 1002 than the unrobust version is for n = 2002 (see Table 1 and Figures 8 and 9).

Concerning the jump height C, only the robust version converges (see Table 2 and

Figure 11), while the unrobust version seems to underestimate systematically the
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absolute distance quadratic distance√
n unbounded ψ bounded ψ unbounded ψ bounded ψ

30 0.6924 1.9941 0.6181 4.2532

50 0.2864 1.1455 0.1285 2.0515

100 0.2713 0.2847 0.1062 0.1266

200 0.4807 0.1546 0.2509 0.0322

Table 2: Mean of the absolute and quadratic distances of the estimates Cn(x1i) to the true values
C(x1i)
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Figure 8: φn(x1i) for n = 302, n = 502, n = 1002, n = 2002, and unbounded score function
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Figure 9: φn(x1i) for n = 302, n = 502, n = 1002, n = 2002, and bounded score function

true jump height for large sample sizes, although the jump curve is estimated well

(see Figures 8 and 10). This can be explained by the special form of the noise used

which is not additive but independent of the true pixel value. Therefore, the mean

of the disturbed pixels is equal at both sides of the jump curve and consequently,

the means of the observations within the windows get closer to each other even if the

windows are on different sides of the jump curve. This way, with an amount of 30%

disturbed pixels, the original pixels have only an influence of 70% to the estimation,

so that the estimated jump height will be reduced to 70% of the true jump height.

The robust estimator is less influenced by the outliers so that the jump height can be

correctly estimated after all. The effect that both estimators overestimate the jump

height for small sample sizes is a result of the maximization process: For x on the

true jump curve and θ describing the direction of this curve in x, the jump height

can already be estimated by |Mn(θ, x)| (see Theorem 1). Therefore it is obvious,

that Cn which maximizes |Mn(θ, x)| over θ and x2 converges from above.
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Figure 10: Cn(x1i) for n = 302, n = 502, n = 1002, n = 2002, and unbounded score
function
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Figure 11: Cn(x1i) for n = 302, n = 502, n = 1002, n = 2002, and bounded score function

Appendix: Proofs

The following lemma gives some properties of the design points and the kernels and

weights.

Lemma 5 For j ∈ {1, 2} we have

(i) ||xi − x|| = O
(
hn
)

and |x1i − x1| = O
(
hn
)

for all θ ∈
[
−π

2
, π

2

]
, x ∈ [0, 1]2,

n ∈ N, and i ∈ J (j)
n (θ, x),

(ii) S(∆i) = O
(

1
n

)
and 1

S(∆i)
= O(n),

(iii) sup θ∈[−π
2 , π

2 ]
x∈[0,1]2

#J
(j)
n (θ, x) = O (n (h2

1n + h2
2n)) .

(iv) T ⊂ [−2, 2]2,

(v)
∑

i∈J(j)
n (θ,x)

α
(j)
i,n(θ, x) = 1 for all θ ∈

[
−π

2
, π

2

]
, x ∈

[
hn , 1− hn

]2
and n ∈ N,

(vi) sup θ∈[−π
2 , π

2 ]
x∈[0,1]2

α
(j)
i,n(θ, x) = O

(
1

nh1nh2n

)
,

(vii)
∣∣∣(K(j)

n (θ, x)
)p
−
(
K

(j)
n (θ, x̃)

)p∣∣∣ ≤ CKp
1

hp+1
1n hp+1

2n

· ||x− x̃|| and∣∣∣K(j)
n (θ, x)−K

(j)
n (θ̃, x)

∣∣∣ ≤ CK
hn

h2
1nh

2
2n
· (|x1|+ |x2|) · |θ − θ̃|

for all θ, θ̃ ∈
[
−π

2
, π

2

]
, x, x̃ ∈ R2 and p, n ∈ N,

13



(viii) sup θ∈[−π
2 , π

2 ]

x∈[ hn ,1−hn ]2

∣∣∣∣∑n
i=1

(
α

(j)
i,n(θ, x)

)2

− 1
n

∫ (
K

(j)
n (θ, u)

)2

du

∣∣∣∣ = O
(
h2
1n+h2

2n

nh2
1nh

2
2n

)
and sup θ∈[−π

2 , π
2 ]

x∈[ hn ,1−hn ]2

∣∣∣∣∑n
i=1

(
α

(j)
i,n(θ, x)

)2
∣∣∣∣ = O

(
h2
1n+h2

2n

nh2
1nh

2
2n

)
,

Proof

(i,ii,vi) Follow from Condition (B1) and (B2).

(iii) With

A
(j)
n (θ, x) :=

{
u ∈ [0, 1]2 : K

(j)
n (θ, u− x) 6= 0

}
and

Ã
(j)
n (θ, x) := UDn

(
A

(j)
n (θ, x)

)
we have

Ã(j)
n (θ, x) ⊂

[
x1− hn −Dn, x1+ hn +Dn

]
×
[
x2− hn −Dn, x2+ hn +Dn

]
for all θ ∈

[
−π

2
, π

2

]
and x ∈ [0, 1]2. For i ∈ J (j)

n (θ, x) we have ∆i∩A(j)
n (θ, x) 6=

∅ and therefore
⋃
i∈J(j)

n (θ,x)
∆i ⊂ Ã

(j)
n (θ, x) for all θ ∈

[
−π

2
, π

2

]
and x ∈ [0, 1]2.

From #J
(j)
n (θ, x) =

∑
i∈J(j)

n (θ,x)

S(∆i)
S(∆i)

= O(n) · S
(⋃

i∈J(j)
n (θ,x)

∆i

)
the claim

follows.

(iv) Follows from Condition (A1).

(v) Follows from Condition (A2).

(vii) Follows from the Lipschitz-continuity of Kj.

(viii) With (ii) and (vii) we have

sup
θ∈[−π

2 , π
2 ]

x∈[ hn ,1−hn ]2

∣∣∣∣∣
n∑
i=1

(
α

(j)
i,n(θ, x)

)2

− 1

n

∫ (
K(j)
n (θ, u)

)2
du

∣∣∣∣∣
= sup

θ∈[−π
2 , π

2 ]

x∈[ hn ,1−hn ]2

∣∣∣∣∣∣
∑

i∈J(j)
n (θ,x)

∫
∆i

K(j)
n (θ, u− x)du

2

− 1

n

∫
∆i

(
K(j)
n (θ, u− x)

)2
du

∣∣∣∣∣∣
14



≤ sup
θ∈[−π

2 , π
2 ]

x∈[ hn ,1−hn ]2

∑
i∈J(j)

n (θ,x)

S(∆i)
2 sup
ξi,ζi∈∆i

∣∣∣(K(j)
n (θ, ξi − x)

)2 − (K(j)
n (θ, ζi − x)

)2∣∣∣
+S(∆i)

∣∣∣∣S(∆i)−
1

n

∣∣∣∣ sup
ζi∈∆i

∣∣∣(K(j)
n (θ, ζi − x)

)2∣∣∣
≤ sup

θ∈[−π
2 , π

2 ]

x∈[ hn ,1−hn ]2

∑
i∈J(j)

n (θ,x)

C2
1

n2
CK2

1

h3
1nh

3
2n

sup
ξi,ζi∈∆i

||ξi − ζi||+
C1

n

C2

n

max
x

K2
j (x)

h2
1nh

2
2n


= O

(
h2

1n + h2
2n

nh2
1nh

2
2n

)
.

The second claim follows with
∫ (

K
(j)
n (θ, u)

)2

du = O
(

1
h1nh2n

)
.

Proof of Lemma 1 With p̃ from Condition (D2) and εi := εi1{|εi|≤i1/ep}, Zi :=

m(xi) + εi, we have for every δ > 0

P

(
sup z∈Z, θ∈[−π

2 , π
2 ]

x∈[ hn ,1−hn ]2

∣∣∣H(j)
n (z; θ, x)− EH

(j)
n (z; θ, x)

∣∣∣ > δ

)

≤ P
(
S

(j)
1,n + S

(j)
2,n + S

(j)
3,n > δ

)
≤ P

(
S

(j)
1,n > δ/3

)
+ P

(
S

(j)
2,n > δ/3

)
+ P

(
S

(j)
3,n > δ/3

)
with

S
(j)
1,n := sup z∈Z, θ∈[−π

2 , π
2 ]

x∈[ hn ,1−hn ]2

∣∣∣∑n
i=1 α

(j)
i,n(θ, x)

(
ψ (Zi − z)− ψ

(
Zi − z

) )∣∣∣
S

(j)
2,n := sup z∈Z, θ∈[−π

2 , π
2 ]

x∈[ hn ,1−hn ]2

∣∣∣∑n
i=1 α

(j)
i,n(θ, x)

(
ψ
(
Zi − z

)
− E

(
ψ
(
Zi − z

)) )∣∣∣
S

(j)
3,n := sup z∈Z, θ∈[−π

2 , π
2 ]

x∈[ hn ,1−hn ]2

∣∣∣∑n
i=1 α

(j)
i,n(θ, x)

(
E
(
ψ
(
Zi − z

))
− E (ψ (Zi − z))

)∣∣∣ .
We now show the convergence of S

(j)
1,n, S

(j)
2,n, and S

(j)
3,n.

S
(j)
1,n :With Lemma 5.vi we have

S
(j)
1,n ≤ sup θ∈[−π

2 , π
2 ]

x∈[ hn ,1−hn ]2

∑n
i=1 α

(j)
i,n(θ, x)Cψ |εi − εi|

≤ O
(

1
nh1nh2n

)
limm→∞

∑m
i=1 |εi − εi|

15



With Markov’s inequality we get P (|εi − εi| > 0) = P
(
|εi| > i1/ep) < E|εi|p

(i1/ep)p < M
ip/ep

and since p > p̃, it follows
∑∞

i=1 P (|εi − εi| > 0) <∞.

Therefore with the Borel-Cantelli Lemma we get

P
(
limn→∞ S

(j)
1,n = 0

)
≥ P (limn→∞

∑n
i=1 |εi − εi| <∞)

≥ P
(⋃∞

n=1

⋂
i≥n{|εi − εi| = 0}

)
= 1.

S
(j)
2,n :We split S

(j)
2,n into three parts, S

(j)
2,n ≤ T

(j)
1,n + T

(j)
2,n + T

(j)
3,n, with

T
(j)
1,n = sup

z∈Z, θ∈[−π
2 , π

2 ]

x∈[ hn ,1−hn ]2

∣∣∣∣∣
n∑
i=1

[
α

(j)
i,n(θ, x)ψ

(
Zi − z

)
− α

(j)
i,n

(
t(θ), r(x)

)
ψ
(
Zi − u(z)

) ]∣∣∣∣∣
T

(j)
2,n = sup

z∈Z, θ∈[−π
2 , π

2 ]

x∈[ hn ,1−hn ]2

∣∣∣∣∣
n∑
i=1

α
(j)
i,n

(
t(θ), r(x)

)[
ψ
(
Zi − u(z)

)
− E

(
ψ
(
Zi − u(z)

)) ]∣∣∣∣∣
T

(j)
3,n = sup

z∈Z, θ∈[−π
2 , π

2 ]

x∈[ hn ,1−hn ]2

∣∣∣∣∣
n∑
i=1

[
α

(j)
i,n

(
t(θ), r(x)

)
E
(
ψ
(
Zi − u(z)

))
− α

(j)
i,n(θ, x)E

(
ψ
(
Zi − z

)) ]∣∣∣∣∣ ,
where, for α from Condition (D2),

t(θ) ∈ Tn :=
{

kπ
n1/4 − π

2
; k ∈

{
0, . . . , bn1/4c

}}
with |t(θ)− θ| ≤ π

2n1/4

r(x) ∈ Rn :=
{(

k
n1/4 ,

l
n1/4

)>
; k, l ∈

{
0, . . . , bn1/4c

}}
with ||r(x)− x|| ≤ 1√

2n1/4

u(z) ∈ Un :=
{
zL + k

nα (zR − zL) ; k ∈ {0, . . . , bnαc}
}

with |u(z)− z| ≤ zR−zL

2nα

for all θ, x, and z.

With the Lipschitz-continuity of ψ and with ψ(0) = 0 we have

sup
z∈Z

∣∣ψ (Zi − u(z)
)∣∣ = sup

z∈Z

∣∣ψ(Zi − u(z))− ψ(0)
∣∣ ≤ sup

z∈Z
Cψ |m(xi) + εi − u(z)|

≤ Cψ

(∣∣∣max
x
{m(x)}+ i1/ep∣∣∣+ |zL|+ |zR|

)
= O

(
n1/ep) (2)

16



From Lemma 5.vii we get
∣∣∣α(j)

i,n(θ, x)− α
(j)
i,n(t(θ), r(x))

∣∣∣ = O
(

1
n

1
n1/4h2

1nh
2
2n

)
and since∣∣∣α(j)

i,n(θ, x)− α
(j)
i,n(t(θ), r(x))

∣∣∣ = 0 for i /∈ J (j)
n (θ, x) ∪ J (j)

n (t(θ), r(x)) it follows

T
(j)
1,n ≤ sup

z,θ,x

∣∣∣∣∣
n∑
i=1

α
(j)
i,n(θ, x)

(
ψ
(
Zi − z

)
− ψ

(
Zi − u(z)

) )∣∣∣∣∣+
sup
z,θ,x

∣∣∣∣∣
n∑
i=1

(
α

(j)
i,n(θ, x)− α

(j)
i,n

(
t(θ), r(x)

))
ψ
(
Zi − u(z)

)∣∣∣∣∣
≤ sup

z,θ,x

n∑
i=1

α
(j)
i,n(θ, x)Cψ |z − u(z)|+

sup
z,θ,x

∑
i∈(J

(j)
n (θ,x)∪J(j)

n (t(θ),r(x)))

∣∣∣α(j)
i,n(θ, x)− α

(j)
i,n(t(θ), r(x))

∣∣∣ · ∣∣ψ (Zi − u(z)
)∣∣

≤ Cψ
zR − zL

2nα
+
(
#J (j)

n (θ, x) + #J (j)
n (t(θ), r(x))

)
·O
(

1

n

1

n1/4h2
1nh

2
2n

)
·O
(
n1/ep)

= O

(
1

nα

)
+O

(
h2

1n + h2
2n

n
1
4
− 1eph2

1nh
2
2n

)
→ 0.

Since also sup
z∈Z

∣∣Eψ (Zi − u(z)
)∣∣ = O

(
n1/ep) the same result holds for T

(j)
3,n.

Since ψ2 is Lipschitz-continous on Z we have as in (2) supz∈Z
∣∣ψ2
(
Zi − z

)∣∣ =

O
(
n1/ep) and therefore sup

z∈Z
Eψ2

(
Zi − z

)
= O

(
n1/ep).

Now we have with Lemma 5.viii

sup z∈Z, θ∈[−π
2 , π

2 ]

x∈[ hn ,1−hn ]2
Var

(∑n
i=1 α

(j)
i,n(θ, x)ψ

(
Zi − z

))
≤ sup z∈Z, θ∈[−π

2 , π
2 ]

x∈[ hn ,1−hn ]2

∑n
i=1

(
α

(j)
i,n(θ, x)

)2 (
Eψ2

(
Zi − z

))
≤ O

(
h2
1n+h2

2n

nh2
1nh

2
2n

)
·O
(
n1/ep)

and therefore,

P
(
T

(j)
2,n > δ/9

)
= P

(
∃t ∈ Tn, r ∈ Rn, u ∈ Un :

∣∣∣∣∣
n∑
i=1

α
(j)
i,n(t, r)

(
ψ
(
Zi − u

)
− E

(
ψ
(
Zi − u

)) )∣∣∣∣∣ > δ/9

)

17



≤
∑
t,r,u

P

(∣∣∣∣∣
n∑
i=1

α
(j)
i,n(t, r)

(
ψ
(
Zi − u

)
− E

(
ψ
(
Zi − u

)) )∣∣∣∣∣ > δ/9

)

≤
∑
t,r,u

Var
(∑n

i=1 α
(j)
i,n(t, r)ψ

(
Zi − u

))
(δ/9)2

≤ (n1/4 + 1) · (n1/4 + 1)2 · (nα + 1) ·O
(
h2

1n + h2
2n

nh2
1nh

2
2n

)
·O
(
n1/ep)

= O

(
h2

1n + h2
2n

n
1
4
− 1ep−αh2

1nh
2
2n

)
→ 0.

Finally, there exists N ∈ N, so that for all n > N we have

P
(
S

(j)
2,n > δ/3

)
≤ P

(
T

(j)
1,n > δ/9

)
+ P

(
T

(j)
2,n > δ/9

)
+ P

(
T

(j)
3,n > δ/9

)
< ε

3
.

S
(j)
3,n :Since |εi| > i

1ep ⇔ |εi|p−1 > i
p−1ep ⇔ |εi|p−1 · i−

p−1ep > 1 it follows that

E|εi − εi| =
∫
|εi|>i

1ep |εi|dP (εi) ≤
∫
|εi|>i

1ep i
− p−1ep |εi|pdP (εi) < i−

p−1
p · E|εi|p

and n∑
i=1

E|εi − εi| <
n∑
i=1

n−
p−1

p E |ε1|p = n
1
pE |ε1|p < n1/4M = O

(
n1/4

)
.

Therefore, we have

S
(j)
3,n ≤ O

(
1

nh1nh2n

)
supz∈Z

∑n
i=1E

∣∣ψ (Zi − z
)
− ψ (Zi − z)

∣∣
≤ O

(
1

nh1nh2n

)
Cψ
∑n

i=1E|εi − εi| = O
(

1
n3/4h1nh2n

)
→ 0

and the claim follows.

Proof of Lemma 2 With Lemma 5.i and 5.v we have for all z ∈ R, θ ∈
[
−π

2
, π

2

]
and x ∈

[
hn , 1− hn

]∣∣∣EH(j)
n (z; θ, x)− h

(j)
n,θ,x(z)

∣∣∣
=

∣∣∣∑i∈Jn
α

(j)
i,n(θ, x)

∫
ψ(µ− z)f(µ−m(xi))dµ+

∑n
i=1

x2i>φ(x1i)

α
(j)
i,n(θ, x)

∫
ψ(µ− z)f(µ−m(xi))dµ

−λ(j)
n,θ(x)

∫
ψ(µ− z)f(µ− m̃(x))dµ

−(1− λ
(j)
n,θ(x))

∫
ψ(µ− z)f(µ− m̃(x)− C(x1))dµ

∣∣∣
18



=
∣∣∣∑i∈Jn

α
(j)
i,n(θ, x)

∫ [
ψ(µ+ m̃(xi)− z)− ψ(µ+ m̃(x)− z)

]
f(µ)dµ

+
∑n

i=1
x2i>φ(x1i)

α
(j)
i,n(θ, x)

∫ [
ψ(µ+ m̃(xi) + C(x1i)− z)

−ψ(µ+ m̃(x) + C(x1)− z)
]
f(µ)dµ

∣∣∣∣∣
≤

∑
i∈J

(j)
n (θ,x)
i∈Jn

α
(j)
i,n(θ, x)

∫
CψCem||xi − x||f(µ)dµ

+
∑

i∈J
(j)
n (θ,x)

x2i>φ(x1i)

α
(j)
i,n(θ, x)

∫
Cψ
[
Cem||xi − x||+ CC |x1i − x1|

]
f(µ)dµ

≤ C̃ ·
∑n

i=1 α
(j)
i,n(θ, x) ·

∫
f(µ)dµ ·O

(
hn
)

= O
(
hn
)
→ 0

with C̃ = Cψ(Cem + CC) independent of θ and x. Therefore the claim follows.

Proof of Lemma 3 First, let h(z) :=
∫
ψ(µ − z)f(µ)dµ and ε > 0 and δ > 0 be

arbitrary. Since ψ is monotone increasing, h is monotone decreasing. The symmetry

of f and the strict monotony in 0 and the antisymmetry of ψ imply h(0) = 0 and

the existence of a δ′ > 0 with h(z) < −δ′ for z ≥ δ and h(z) > δ′ for z ≤ −δ. Since

h
(j)
n,θ,x(z) = λ

(j)
n,θ(x)h(z − m̃(x)) +

(
1− λ

(j)
n,θ(x)

)
h(z − m̃(x)− C(x1)) (3)

it follows, that

h
(j)
n,θ,x(m̃(x)− δ) = λ

(j)
n,θ(x)h(−δ) +

(
1− λ

(j)
n,θ(x)

)
h(−δ − C(x1)) > δ′

h
(j)
n,θ,x(m̃(x) + C(x1) + δ) = λ

(j)
n,θ(x)h(C(x1) + δ) +

(
1− λ

(j)
n,θ(x)

)
h(δ) < −δ′

for all n ∈ N, (θ, x) ∈ Ln.

Let M(j)
n (θ, x) :=

{
z ∈ R : H

(j)
n (z; θ, x) = 0

}
=
(
H

(j)
n

)−1

(0; θ, x), that means

m
(j)
n (θ, x) ∈ M(j)

n (θ, x). With Kj also the weights α
(j)
i,n(θ, x) are nonnegative and

therefore the monotony of ψ implies that H
(j)
n (z; θ, x) is monotone decreasing in z.

Since ψ is even strictly monotone in an environment of 0 there exist real numbers

M
(j)
1,n;θ,x and M

(j)
2,n;θ,x with H

(j)
n (z; θ, x) > 0 for z ≤ M

(j)
1,n;θ,x and H

(j)
n (z; θ, x) < 0

for z ≥ M
(j)
2,n;θ,x. Since H

(j)
n (z; θ, x) is continuous this implies the existence of a

z
(j)
0,n;θ,x ∈ R with H

(j)
n

(
z

(j)
0,n;θ,x; θ, x

)
= 0.
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Now, define a
(j)
n;θ,x := sup{z ∈ R : H

(j)
n (z; θ, x) > 0} and bn := inf{z ∈ R :

H
(j)
n (z; θ, x) < 0}. Obviously, these fulfill a

(j)
n;θ,x ≤ z

(j)
0,n;θ,x ≤ b

(j)
n;θ,x and

(
a

(j)
n;θ,x, b

(j)
n;θ,x

)
⊂

M(j)
n (θ, x) ⊂

[
a

(j)
n;θ,x, b

(j)
n;θ,x

]
. But since M(j)

n (θ, x) is the inverse image of the compact

set {0} and H
(j)
n (z; θ, x) is continuous, it follows that M(j)

n (θ, x) =
[
a

(j)
n;θ,x, b

(j)
n;θ,x

]
.

Since the set Z :=
[
minx∈[0,1]2{m̃(x)− δ},maxx∈[0,1]2{m̃(x) + C(x1) + δ}

]
is com-

pact, with Lemma 1 and 2 there exists N ∈ N with

P
(
∃(θ, x) ∈ Ln : m

(j)
n (θ, x) /∈

(
m̃(x)− δ, m̃(x) + C(x1) + δ

))
≤ P

(
∃(θ, x) ∈ Ln : a

(j)
n;θ,x ≤ m̃(x)− δ

)
+

P
(
∃(θ, x) ∈ Ln : b

(j)
n;θ,x ≥ m̃(x) + C(x1) + δ

)
≤ P

(
∃(θ, x) ∈ Ln : H

(j)
n (m̃(x)− δ; θ, x) ≤ 0

)
+

P
(
∃(θ, x) ∈ Ln : H

(j)
n (m̃(x) + C(x1) + δ; θ, x) ≥ 0

)
≤ P

(
∃(θ, x) ∈ Ln : H

(j)
n (m̃(x)− δ; θ, x)− h

(j)
n,θ,x(m̃(x)− δ) < −δ′

)
+

P
(
∃(θ, x) ∈ Ln : H

(j)
n (m̃(x) + C(x1) + δ; θ, x)− h

(j)
n,θ,x(m̃(x) + C(x1) + δ) > δ′

)
≤ 2 · P

(
sup z∈Z, θ∈[−π

2 , π
2 ]

x∈[ hn ,1−hn ]2

∣∣∣H(j)
n (z; θ, x)− h

(j)
n,θ,x(z)

∣∣∣ > δ′

)

< ε

for all n > N .

We get (ii) in the same way, taking note of the fact that in (3) for λ
(j)
n,θ(x) = 1

we have h
(j)
n,θ,x(z) = h(z − m̃(x)) and consequently h

(j)
n,θ,x(m̃(x) − δ) = h(−δ) > δ′

and h
(j)
n,θ,x(m̃(x) + δ) = h(δ) < −δ′ for all n ∈ N, (θ, x) ∈ L1

j,n, and j = {1, 2}.
Analogously, for λ

(j)
n,θ(x) = 0 we have h

(j)
n,θ,x(z) = h(z − m̃(x) − C(x1)), so that

h
(j)
n,θ,x(m̃(x) + C(x1) − δ) = h(−δ) > δ′ and h

(j)
n,θ,x(m̃(x) + C(x1) + δ) = h(δ) < −δ′

for all n ∈ N, (θ, x) ∈ L0
j,n, and j = {1, 2}.
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Before we can show the convergence of h
(j)
n,θ,x(z) we need the following asymptotic

behavior of λ
(j)
n,θ(x):

Lemma 6 For j ∈ {1, 2} we have

sup θ∈[−π
2 , π

2 ]
x∈[0,1]2

∣∣∣∣∣λ(j)
n,θ(x)−

∫
AC

K
(j)
n (θ, u− x)du

∣∣∣∣∣ = O
(

1√
nh1nh2n

)
.

Proof Let An :=
⋃
i∈Jn

∆i, A
(1)
n := {u ∈ [0, 1]2 : ∀ũ ∈ A : ||u − ũ|| > Dn}, and

A
(2)
n := {u ∈ [0, 1]2 : ∃ũ ∈ AC : ||u − ũ|| ≤ Dn}. Obviously A

(1)
n ⊂ AC ⊂ A

(2)
n .

As well we have A
(1)
n ⊂ An ⊂ A

(2)
n , since for any u ∈ [0, 1]2 there exists 1 ≤ i ≤ n

with u ∈ ∆i, what means ||u − xi|| < Dn. For u ∈ A
(1)
n we have xi ∈ AC for

this i, what means i ∈ Jn and therefore u ∈ An. For u ∈ An we have i ∈ Jn
respectively and therefore xi ∈ AC , what means u ∈ A

(2)
n . Consequently, we have

S
(
An4AC

)
≤ S

(
A

(2)
n \ A(1)

n

)
.

Further, for u ∈ A(2)
n and suitable ũ ∈ AC we have

u2 ≤ ũ2 +Dn ≤ φ(ũ1) +Dn ≤ φ(u1) + max
ξ∈[0,1]

|φ′(ξ)| · |ũ1− u1|+Dn ≤ φ(u1) +C ·Dn.

Since A
(1)
n ⊂ AC we have u2 ≤ φ(u1) for u ∈ A(1)

n , and therefore

S
(
A(2)
n \ A(1)

n

)
≤
∫ 1

0
(φ(u1) + C ·Dn)− φ(u1)du1 = C ·Dn = O

(
1√
n

)
.

This implies

sup θ∈[−π
2 , π

2 ]
x∈[0,1]2

∣∣∣∣∣λ(j)
n,θ(x)−

∫
AC

K
(j)
n (θ, u− x)du

∣∣∣∣∣
= sup θ∈[−π

2 , π
2 ]

x∈[0,1]2

∣∣∣∣∣ 1
h1nh2n

∫
An

Kj(H
−1
n Aθ(u− x))du− 1

h1nh2n

∫
AC

Kj(H
−1
n Aθ(u− x))du

∣∣∣∣∣
≤ 1

h1nh2n
· S
(
An4AC

)
·maxx∈[0,1]2 |Kj(x)| = O

(
1√

nh1nh2n

)
.

Proof of Lemma 4 First, we show the convergence of λ
(j)
n,θ(x̃) to λ

(j)
θ (x̃).

With Lemma 6 we have

sup θ∈[−π
2 , π

2 ]
x1∈[0,1]

∣∣∣λ(j)
n,θ(x̃)− λ

(j)
θ (x̃)

∣∣∣
= sup θ∈[−π

2 , π
2 ]

x1∈[0,1]

∣∣∣∣∣ 1
h1nh2n

∫
AC

Kj(H
−1
n Aθ(u− x̃))du−

∫
Ax1

Kj(Q
−1Aθu)du

∣∣∣∣∣
+O

(
1√

nh1nh2n

)
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= sup θ∈[−π
2 , π

2 ]
x1∈[0,1]

∣∣∣∣∣ ∫
H−1

n Aθ(AC−ex)∩T Kj(ũ)dũ−
∫

Q−1Aθ(Ax1 )∩T
Kj(ũ)dũ

∣∣∣∣∣+O
(

1√
nh1nh2n

)
→ 0,

since supθ,x1
S
((
H−1
n Aθ

(
AC − x̃

)
∩T
)
4
(
Q−1Aθ(Ax1)∩T

))
→ 0, what can be shown

as follows:

Let T1(θ, x1) := φ′(x1) cos (−θ)−sin (−θ) and T2(θ, x1) := φ′(x1) sin (−θ)+cos (−θ) .
Since T1(θ, x1)

2 +T2(θ, x1)
2 = φ′(x1)

2 +1 ≥ 1, we have for all θ, x1 that |T1(θ, x1)| ≥
t0 or |T2(θ, x1)| ≥ t0 where t0 =

√
1
2
. Further, there exists CT independent of θ and

x1 with |T1(θ, x1)| ≤ CT and |T2(θ, x1)| ≤ CT for all θ and x1.

With A−1
θ = A−θ and with the Taylor-expansion of φ in x1 we have on the one hand

u ∈ H−1
n Aθ

(
AC − x̃

)
⇔ A−1

θ Hnu+ x̃ ∈ AC ⇔ a>2−θHnu+ φ(x1) ≤ φ(a>1−θHnu+ x1)

⇔ T2(θ, x1)u2 ≤ h1n

h2n
T1(θ, x1)u1 +O

(
h2
1n

h2n
+ h1n + h2n

)
and on the other hand

u ∈ Q−1Aθ(Ax1) ⇔ A−1
θ Qu ∈ Ax1 ⇔ a>2−θQu ≤ φ′(x1)a

>
1−θQu

⇔ T2(θ, x1)u2 ≤ q T1(θ, x1)u1.

For u ∈
(
H−1
n Aθ

(
AC − x̃

)
\Q−1Aθ(Ax1)

)
∩ T we have consequently

q T1(θ, x1)u1 < T2(θ, x1)u2 ≤
h1n

h2n

T1(θ, x1)u1 +O(h1n + h2n). (4)

If now |T2(θ, x1)| ≥ t0 holds, this implies

q
T1(θ, x1)

T2(θ, x1)
u1 < u2 ≤ h1n

h2n

T1(θ, x1)

T2(θ, x1)
u1 +

O(h1n + h2n)

T2(θ, x1)
for T2(θ, x1) > 0

q
T1(θ, x1)

T2(θ, x1)
u1 > u2 ≥ h1n

h2n

T1(θ, x1)

T2(θ, x1)
u1 +

O(h1n + h2n)

T2(θ, x1)
for T2(θ, x1) < 0

and with Lemma 5.iv we get

sup θ∈[−π
2 , π

2 ]
x1∈[0,1]

|T2(θ,x1)|≥t0

S
((
H−1
n Aθ

(
AC − x̃

)
\Q−1Aθ(Ax1)

)
∩ T

)
≤ sup θ∈[−π

2 , π
2 ]

x1∈[0,1]
|T2(θ,x1)|≥t0

2∫
−2

∣∣∣h1n

h2n
− q
∣∣∣ |T1(θ,x1)|
|T2(θ,x1)|u1 + O(h1n+h2n)

|T2(θ,x1)| du1

≤ 4
(∣∣∣h1n

h2n
− q
∣∣∣ CT

t0
+ O(h1n+h2n)

t0

)
→ 0.
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But if |T1(θ, x1)| ≥ t0 holds, we similarly get the same result. Moreover, (4) holds

for u ∈
(
Q−1Aθ(Ax1) \ H−1

n Aθ
(
AC − x̃

) )
∩ T with changed signs, so that we also

have sup θ∈[−π
2 , π

2 ]
x1∈[0,1]

S
((
Q−1Aθ(Ax1) \ H−1

n Aθ
(
AC − x̃

) )
∩ T

)
→ 0 what means, that

also

sup θ∈[−π
2 , π

2 ]
x1∈[0,1]

S
(
(H−1

n Aθ
(
AC − x̃

)
∩ T )4(Q−1Aθ(Ax1) ∩ T )

)
→ 0.

Now, we get

sup z∈R, θ∈[−π
2 , π

2 ]
x1∈[0,1]

∣∣∣h(j)
n,θ,ex(z)− h

(j)
θ,ex(z)

∣∣∣
≤ sup z∈R, θ∈[−π

2 , π
2 ]

x1∈[0,1]

∣∣∣λ(j)
n,θ(x̃)− λ

(j)
θ (x̃)

∣∣∣
·
∣∣∣∫ ψ(µ− z + m̃(x̃)

)
f(µ)dµ−

∫
ψ
(
µ− z + m̃(x̃) + C(x1)

)
f(µ)dµ

∣∣∣
≤ sup θ∈[−π

2 , π
2 ]

x1∈[0,1]

∣∣∣λ(j)
n,θ(x̃)− λ

(j)
θ (x̃)

∣∣∣ · Cψ ·max |C(x1)| ·
∣∣∫ f(µ)dµ

∣∣→ 0.

Proof of Theorem 1 For x1 ∈
[
hn , 1− hn

]
let first θ̃(x1) := − arctan(φ′(x1)).

Since arctan(φ′(x1)) ∈
(−π

2
, π

2

)
and therefore cos

(
θ̃(x1)

)
> 0 we have for all u ∈

T ∩ (Ax1)
C (e.g. u2 > φ′(x1)u1)

a>
2 eθ(x1)

u >
[
sin
(
θ̃(x1)

)
+ φ′(x1) cos

(
θ̃(x1)

)]
u1

=
[
tan
(
θ̃(x1)

)
︸ ︷︷ ︸

=−φ′(x1)

+φ′(x1)
]
cos
(
θ̃(x1)

)
u1 = 0.

With Condition (A1) that implies K1

(
Q−1Aeθ(x1)u

)
= 0 for all u ∈ T ∩ (Ax1)

C . But

for u /∈ T we also have K1

(
Q−1Aeθ(x1)u

)
= 0 and therefore, with x̃ := (x1, φ(x1))

>,

we have

λ
(1)eθ(x1)

(x̃) =
∫
Ax1

K1

(
Q−1Aeθ(x1)u

)
du =

∫
R2

K1

(
Q−1Aeθ(x1)u

)
du = 1

what implies

h
(1)eθ(x1),ex(z) =

∫
ψ(µ− z)f(µ− m̃(x̃))dµ

for all x1 ∈
[
hn , 1− hn

]
.
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With the same arguments as in the proof of Lemma 3 we get

P
(
∃x1 ∈

[
hn , 1− hn

]
: m(1)

n

(
θ̃(x1), x̃

)
/∈
(
m̃(x̃)− δ, m̃(x̃) + δ

))
< ε

for all n > N1 what implies

P
(
m(1)
n

(
θ̃(x1), x̃

)
∈
(
m̃(x̃)− δ, m̃(x̃) + δ

)
∀x1 ∈

[
hn , 1− hn

])
> 1− ε.

Analogously we get λ
(2)eθ(x1)

(x̃) = 0 and

P
(
m(2)
n

(
θ̃(x1), x̃

)
∈
(
m̃(x̃) + C(x1)− δ, m̃(x̃) + C(x1) + δ

)
∀x1 ∈

[
hn , 1− hn

] )
> 1− ε

for all n > N1, what implies

P
(∣∣∣Mn

(
θ̃(x1), x̃

)∣∣∣ ∈ (C(x1)− 2δ, C(x1) + 2δ
)
∀x1 ∈

[
hn , 1− hn

])
> 1− ε.

Finally, we have

Cn(x1) = max
x2∈[hn ,1−hn ]

max
θ∈[−π

2
,π
2 ]

∣∣Mn(θ, (x1, x2)
>)
∣∣ ≥ ∣∣∣Mn

(
θ̃(x1), x̃

)∣∣∣ ,
for all n > N1 and x1 ∈

[
hn , 1− hn

]
what implies

P
(
Cn(x1) > C(x1)− 2δ ∀x1 ∈

[
hn , 1− hn

] )
> 1− ε

for all n > N1. But since also x̃n := (x1, φn(x1))
> ∈

[
hn , 1− hn

]2
, with Lemma 3.i

there exists as well N2 ∈ N with

P
(
Cn(x1) < C(x1) + 2δ ∀x1 ∈

[
hn , 1− hn

] )
≥ P

(
m(1)
n (θn(x̃n), x̃n) ∈

(
m̃(x̃n)− δ, m̃(x̃n) + C(x1) + δ

)
∧

m(2)
n (θn(x̃n), x̃n) ∈

(
m̃(x̃n)− δ, m̃(x̃n) + C(x1) + δ

)
∀x1 ∈

[
hn , 1− hn

])
> 1− 2ε

for all n > N2. With N := max{N1, N2} the claim is proven.

Proof of Theorem 2 With Mφ′ := maxx1∈[0,1] |φ′(x1)|, qn := max{h1n, h2n}, and

pn := 2Mφ′qn + 2qn +Mφ′Dn +Dn, let

A+
n := {(x1, x2) ∈

[
hn , 1− hn

]2
: x2 ≥ φ(x1) + pn}

A−n := {(x1, x2) ∈
[
hn , 1− hn

]2
: x2 ≤ φ(x1)− pn}.

24



We show, that for all θ ∈
[
−π

2
, π

2

]
, n ∈ N, and j ∈ {1, 2} we have λ

(j)
n,θ(x) = 1 for all

x ∈ A−n and λ
(j)
n,θ(x) = 0 for all x ∈ A+

n .

First, let x ∈ A−n and i /∈ Jn, what means x2i > φ(x1i). Then, we have for all u ∈ ∆i

u2 > φ(x1i) − Dn ≥ φ(u1) −Mφ′Dn − Dn. If |u1 − x1| ≤ 2qn, we therefore have

u2−x2 ≥ φ(u1)−Mφ′Dn−Dn−(φ(x1)−pn) = φ′(ξu)(u1−x1)+2Mφ′qn+2qn ≥ 2qn.

That means we have ||u− x|| ≥ 2qn for all u ∈ ∆i what implies i /∈ J
(j)
n (θ, x).

Consequently we have J
(j)
n (θ, x) ⊂ Jn for all x ∈ A−n and θ ∈

[
−π

2
, π

2

]
, what, with

Lemma 5.v, immediately implies

λ
(j)
n,θ(x) =

∑
i∈Jn

α
(j)
i,n(θ, x) =

∑
i∈J(j)

n (θ,x)
α

(j)
i,n(θ, x) = 1

for all θ ∈
[
−π

2
, π

2

]
, x ∈ A−n and n ∈ N. λ

(j)
n,θ(x) = 0 for x ∈ A+

n follows analogously.

With L0
j,n and L1

j,n from Lemma 3.ii we now have
[
−π

2
, π

2

]
×A−n ⊂ L1

j,n and
[
−π

2
, π

2

]
×

A+
n ⊂ L0

j,n for all n ∈ N. Therefore, we get that for all ε > 0, δ > 0 there exists a

N1 ∈ N so that for all n > N1

P
(
supx∈A−n C̃n(x) > δ

)
= P

(
sup x∈A−n

θ∈[−π
2 , π

2 ]

∣∣m(2)
n (θ, x)−m

(1)
n (θ, x)

∣∣ > δ

)

≤ P
(
∃(θ, x) ∈ L1

j,n : m
(1)
n /∈

(
m̃(x)− δ, m̃(x) + δ

)
∨m(2)

n /∈
(
m̃(x)− δ, m̃(x) + δ

))
< ε/2

and in the same way P
(
supx∈A+

n
C̃n(x) > δ

)
< ε/2.

Since Cn(x1) = C̃n

(
(x1, φn(x1))

>
)

that implies

P
(
∃x1 ∈

[
hn , 1− hn

]
: Cn(x1) > δ ∧ (x1, φn(x1))

> ∈ A−n ∪ A+
n

)
(5)

≤ P
(
supx∈A−n∪A+

n
C̃n(x) > δ

)
< ε

for all n > N1. Further, we have

P
(
∃x1 ∈

[
hn , 1− hn

]
: Cn(x1) > δ ∧ (x1, φn(x1))

> ∈ A−n ∪ A+
n

)
≥ P

(
Cn(x1) > δ ∀x1 ∈

[
hn , 1− hn

])
+

P
(
∃x1 ∈

[
hn , 1− hn

]
: (x1, φn(x1))

> ∈ A−n ∪ A+
n

)
− 1. (6)
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Now, w.l.o.g. let ε < 1
2

and δ < minx1∈[0,1]C(x1)/2. Then, with Theorem 1 there

exists N2 ∈ N with

P
(
Cn(x1) > δ ∀x1 ∈

[
hn , 1− hn

])
(7)

≥ 1− P
(
∃x1 ∈

[
hn , 1− hn

]
: Cn(x1) < C(x1)− δ

)
≥ 1− P

(
supx1∈[hn ,1−hn ]

∣∣∣Cn(x1)− C(x1)
∣∣∣ > δ

)
> 1− ε

for all n > N2. (5),(6), and (7) provide

P
(
∃x1 ∈

[
hn , 1− hn

]
: (x1, φn(x1))

> ∈ A−n ∪ A+
n

)
≤ P

(
∃x1 ∈

[
hn , 1− hn

]
: Cn(x1) > δ ∧ (x1, φn(x1))

> ∈ A−n ∪ A+
n

)
−P

(
Cn(x1) > δ ∀x1 ∈

[
hn , 1− hn

])
+ 1

< 2ε

for all n > max{N1, N2}. Since pn → 0 there exists N3 ∈ N with pn < δ for all

n > N3 and therefore we finally get

P
(
supx1∈[hn ,1−hn ]

∣∣∣φn(x1)− φ(x1)
∣∣∣ > δ

)
< P

(
∃x1 ∈

[
hn , 1− hn

]
: (x1, φn(x1))

> ∈ A−n ∪ A+
n

)
< 2ε

for all n > N := max{N1, N2, N3}.
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