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lustering with redes
endingM-estimatorsTim Garlipp and Christine H. M�ullerUniversit�at Oldenburg, Fa
hberei
h 6 MathematikPostfa
h 2503, D - 26111 Oldenburg, GermanyAbstra
t. We use the lo
al maxima of a redes
ending M-estimator to identify
lusters, a method proposed already by Morgenthaler (1990) for �nding regression
lusters. We work out the method not only for 
lassi
al regression but also fororthogonal regression and multivariate lo
ations and give 
onsisten
y results for allthree 
ases. The approa
h of orthogonal regression is applied to the identi�
ationof edges in noisy images.1 Introdu
tionFor independently and identi
ally distributed random variables Y1; : : : ; YN ,the (lo
ation-) M-estimator is de�ned as (global or some lo
al) maximum ofHN (y) = NXn=1 �(Yn � y):If �0 is stri
tly monotone the obje
tive fun
tion is unimodal, so that themaximum is unique. For example with �(y) = �y2, the maximum is attainedat the mean of the observations. But using s
ore fun
tions with redes
endingderivatives, Hn(y) 
an have several lo
al maxima, what espe
ially has thedisadvantage that 
omputation of the M-estimator is more 
ompli
ated. Butsin
e these lo
al maxima 
orrespond to substru
tures in the data, they 
anbe used for 
lustering.Se
tion 2 motivates this approa
h in the 
ase of lo
ation 
lustering. InSe
tion 3 it is applied to 
lustering regression data in the 
ase of 
lassi
al ver-ti
al regression (Se
tion 3.1) and in the 
ase of orthogonal regression, whi
hhas several advantages (Se
tion 3.2). In Se
tion 4 the orthogonal regressionmethod is used for identifying edges in noisy images.All proofs 
an be found in M�uller and Garlipp (2003).2 Clustering with redes
ending M-estimatorsLet yN = (y1N ; : : : ; yNN ) be a realization of independently and identi
allydistributed random variables YnN 2 Rk following a distribution with density



2 Garlipp and M�ullerh. The positions of the lo
al maxima of the density h are 
onsidered as true
luster 
enter points and are denoted by M, i.e.M := f� 2 Rk ; h(�) has lo
al maximum at �g:If the distribution of YnN is a mixture of distributions with unimodal densi-ties, for example YnN = �l + EnN with probability 
l (P 
l = 1) and EnNhas density fl with maximum at 0, then the lo
al maxima of the density hare attained at the maxima �l of the densities fl(� � �l) only if the supportsof the fl(���l) do not overlap, what in general is not the 
ase. Nevertheless,to de�ne the true 
luster 
enter points via the maxima of the density h ismore general, sin
e the densities within the 
lusters are not known in pra
-ti
e and this de�nition is even appropriate for the general situation, whereno assumptions for the model are made and only a general density h is used.Hen
e the aim is to estimate the positions of the lo
al maxima of h.Having the result that kernel density estimates are 
onsistent estimatesof the density h (see e.g. Silverman (1986)), we estimate the lo
al maxima ofh and thus the 
enter points by the lo
al maxima of the estimated densitygiven by the kernel estimator. In Theorem 1 we show the 
onsiten
y of thisestimator under some regularity 
onditions. A kernel density estimator forh(�) is given by HN (�; yN ) := 1N NXn=1 1skN ��ynN � �sN � ;where � 2 Rk , � : Rk ! R+ is the kernel fun
tion and sN 2 R+ n f0g isthe bandwidth. If sN 
onverges to zero, then HN (�; yN ) 
onverges to h(�)in probability under some regularity 
onditions. Hen
e, the lo
al maxima ofHN (�; yN ), whi
h also 
an be 
onsidered as M-estimates with respe
t to theobje
tive fun
tion HN (�; yN ), 
an be used as estimate for the set M.
Fig. 1. Some one dimensional observations with 
orresponding s
ore fun
tions andtheir sum (obje
tive fun
tion) with small (left) and large (right) s
ale parameter.Usually � will be a unimodal density. Hen
e, if the s
ale parameter sNis small enough and the distan
e between the ynN are large enough, ev-ery ynN is a lo
al maximum. But usually there is so mu
h overlap of the�� 1sN (ynN � �)� that none of the ynN is a lo
al maximum (Figure 1). How-ever, sear
hing the lo
al maxima in in
reasing dire
tion starting at any ynN
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Fig. 2. Contour plot of the density of the mixture of three two dimensional normaldistributions with generated observations and estimated 
luster 
enter points.should provide the relevant maxima. This is an approa
h used also by Chuet al. (1998) for 
onstru
ting 
orner preserving M-smoother for image re
on-stru
tion. The 
onsisten
y of these M-smoothers even at jumps was shownby Hillebrand and M�uller (2001). A similar proof 
an be used here for the
onsisten
y of the setMN(yN ) := f� 2 Rk ; HN (�; yN ) has lo
al maximum at �gwhi
h is the estimate of the set M of the positions of the true lo
al maxima.The lo
al maxima of HN (�; yN ) 
an be found by Newton Raphson methodstarting at any ynN with n = 1; : : : ; N .To avoid problems like "bump huntig" (see e.g. Donoho (1988)), we neednot only pointwise 
onvergen
e of HN (�; yN ) to h(�) but additional assump-tions to a
hive the 
onsisten
y of the set MN (yN ) for the set M. One is theuniform 
onvergen
e whi
h 
an be a
hieved by interse
ting MN (yN ) with a
ompa
t subset of Rk . Appropriate 
ompa
t subsets are given by�� := �� 2 Rk ; h(�) � 1�� with � 2 N:Then, with �maxh00(�) denoting the maximum eigenvalue of h00(�), we haveTheorem 1. If minfj�maxh00(�)j;� 2 M0g > 0, then there exists �0 2 N sothat for all � � �0; � > 0; Æ > 0 there exists an N0 2 N withP�MN (YN ) \ �� � UÆ(M) and M� UÆ(MN (YN ) \ ��)� > 1� �for all N � N0, where UÆ(M) := f� 2 Rk ; there exists a �0 2 Mwith k�� �0k < Æg and M0 := f� 2 Rk ;h0(�) = 0 and h(�) > 0g.Figure 2 shows a 
ontour plot of the density h(�) of a mixture of three twodimensional normal distributions with parameters �1 = (0; 0)>, �1 = �1 00 1�,�2 = (4; 3)>,�2 = �2 11 1�, �3 = (4;�3)>,�3 = �1�1�1 4� and 
1 = 
2 = 0:36, 
3 =0:28 with 28 generated obsertations and the three estimated lo
al maxima(bla
k dots).



4 Garlipp and M�uller3 Clustering of regression data3.1 Verti
al regressionRegard a mixture of L regression models with di�erent parameter ve
tors �l.Then we have observations zN = (z1N ; : : : ; zNN),whi
h are realizations of in-dependently and identi
ally distributed random variables ZnN :=(X>nN ; YnN )>, with YnN = X>nN�l +EnNif the n'th observation is 
oming from the l'th 
luster.In the 
ase of L = 1, the M-estimator for the regression parameter � isde�ned as a maximum point of the obje
tive fun
tionHN (�; zN ) := 1N NXn=1 1sN ��ynN � x>nN�sN � ;where � : R ! R+ is the s
ore fun
tion and sN 2 R+ nf0g is a s
ale parameter(see e.g. Huber (1973, 1981), Hampel et al. (1986)).If � is not 
onvex, what means that the derivative of � is redes
ending,then HN (�; zN ) has several lo
al maxima. As Morgenthaler (1990), Hennig(1997, 2003), and Chen et al. (2001) already proposed, these 
an be used for�nding regression 
lusters. Under some regularity 
onditions for sN ! 0 and�, we have thenHN (�; ZN )) N!1�! h(�) := LXl=1 
l Z f(x>(� � �l))Gl(dx)in probability for all � 2 Rp , where Gl is the distribution of XnN 
omingfrom the l'th 
luster and f denotes the density fun
tion of the distributionof EnN . Again 
l > 0 denotes the probability that the n'th observation is
oming from the l'th 
luster and PLl=1 
l = 1 holds. The fun
tion h playsnow the same role as the density h in multivariate density estimation.Under enough separation the lo
al maxima of h are attained at �1; : : : ; �L.Hen
e as in the multivariate 
ase we regard the positions of the lo
al maximaof h as the true parameter ve
tors whi
h shall be estimated. Let M be theset of the positions of these lo
al maxima, i.e.M := f� 2 Rp ; h(�) has lo
al maximum at �g ;whi
h 
an be estimated byMN (zN ) := f� 2 Rp ; HN (�; zN ) has lo
al maximum at �g:The lo
al maxima of HN (�; zN ) 
an be found by Newton Raphson methodstarting at any hyperplane through (x>n1N ; yn1N ); : : : ; (x>npN ; ynpN ) withfn1; : : : ; npg � f1; : : :Ng.
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ending M-estimators 5As in the multivariate 
ase, MN (zN ) is a 
onsistent estimator for M ifit is interse
ted with a 
ompa
t subset, whi
h is here�� := �� 2 Rp ; h(�) � 1�� with � 2 N:However, here the 
ompa
tness of �� is not always satis�ed. In parti
ular,it is not satis�ed if one of the distributions Gl is dis
rete so that regressionexperiments with repetitions at �nite design points are ex
luded.Hen
e, with UÆ(M) and M0 as in Theorem 1 we have theTheorem 2. If �� is 
ompa
t for all � 2 N and minfj�maxh00(�)j;� 2M0g > 0, then there exists �0 2 N so that for all � � �0; � > 0; Æ > 0there exists an N0 2 N withP�MN (ZN ) \ �� � UÆ(M) and M� UÆ(MN (ZN ) \��)� > 1� �for all N � N0.3.2 Orthogonal regressionFor orthogonal regression usually an error-in-variable model is assumed. Con-sidering a mixture of L regressions with parameters (a>l ; bl) 2 S1 � R,(S1 = fa 2 Rp : jjajj = 1g), this means that we have observations zN =(z1N ; : : : ; zNN), whi
h are realizations of independent and identi
ally dis-tributed random variables ZnN := (V >nN ;WnN )>, with(V >nN ;WnN ) = (X>nN ; YnN ) + (E>1nN ; E2nN )for n = 1; : : : ; N , where (X>nN ; YnN ); E1nN ; E2nN are independent, XnN ,VnN , E1nN 2 Rp�1 , YnN , WnN , E2nN 2 R, anda>l �XnNYnN � = bl almost surely;for ZnN 
oming from the l-th regression.In the 
ase of L = 1, an M-estimator for (a; b) was proposed by Zamar(1989) and extends the orthogonal least squares regression estimator. It isde�ned as a maximum point of the obje
tive fun
tionHN (a; b; zN) := 1N NXn=1 1sN ��a>znN � bsN � ;where � : R ! R+ is the s
ore fun
tion and sN 2 R+ n f0g is a s
aleparameter.For �nding regression 
lusters, redes
ending M-estimators for orthogonalregression were also proposed by Chen et al. (2001). Under some regularity
onditions for sN ! 0 and �, we have thenHN (a; b; ZN) N!1�! h(a; b)in probability for all (a>; b) 2 S1�R, where h(a; b) = fa>ZnN (b) is the density
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Fig. 3. Contour plot of the limit fun
tion h(a; b) for a mixture of two nonparal-lel (left, (�1; b1) = (0:46; 0:9), (�2; b2) = (�1:11;�18)) and two parallel (right,(�1; b1) = (0:46; 0:9), (�2; b2) = (0:46; 12:4)) regression lines.of the distribution on a>ZnN . Note that, in opposite to 
lassi
al verti
alregression, the fun
tion h(a; b) again is a density and shows therefore morerelations to the fun
tion h in the multivariate 
ase of Se
tion 2. Moreover, asin Se
tion 3.1, h is independent of �.If the regression hyperplanes given by (a>l ; bl) are enough separated, thenh(a; b) will have lo
al maxima at (a; b) = (al; bl).See for example Figure 3 for the two-dimensional 
ase with al = (
os(�l);sin(�l))>. Note that the symmetry in Figure 3 is 
aused by the �-periodi
ityof the parameter �. Hen
e it turns out for orthogonal regression that, for
lusters around nonparallel lines, only two lo
al maxima appear where, for
lusters around two parallel lines, a third lo
al maximum with a rather smallheight appears. Figure 4 shows a simulation for both 
ases. Here, with theused s
ale parameter sN = 2, the obje
tive fun
tion Hn(a; b; zn) has a thirdlo
al maximum also in the 
ase of nonparallel lines but again with a smallerheight.The aim is now to estimate the lo
al maxima of h(a; b), or more pre
isely,the setM := f(a>; b) 2 S1 � R; h(a; b) has lo
al maximum at (a>; b)g:As for 
lassi
al verti
al regression, if the derivative of � is redes
ending,then HN (a; b; zN) has several lo
al maxima so that we de�neMN (zN ) := (1)f(a>; b) 2 S1 � R; HN (a; b; zN) has lo
al maximum at(a>; b)g:The lo
al maxima of HN (�; zN) 
an be found as for verti
al regression (seeSe
tion 3.1).As before, the 
onsisten
y of MN(zN ) 
an be shown only if MN (zN ) isinterse
ted with the set�� := �(a>; b) 2 S1 � R; h(a; b) � 1�� :
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Fig. 4. True (dashed) and estimated (solid) regression lines in the 
ase of twononparallel and two parallel regression lines.Sin
e a is lying in the 
ompa
t set S1 and h(a; �) is a density fun
tion,the 
ompa
tness of �� holds here for all distributions of the regressor XnN .Hen
e, orthogonal regression is also in this sense superior to 
lassi
al verti
alregression where a restri
tion on the distribution of XnN is ne
essary toensure the 
ompa
tness of �� (see Se
tion 3.1).With UÆ(M) and M0 as in Theorem 1 we have theTheorem 3. If minfj�maxh00(a; b)j; (a>; b) 2 M0g > 0, then there exists�0 2 N so that for all � � �0; � > 0; Æ > 0 there exists an N0 2 N withP�MN (ZN ) \ �� � UÆ(M) and M� UÆ(MN (ZN ) \��)� > 1� �for all N � N0.4 Edge identi�
ationAs an appli
ation of the orthogonal regression 
luster method, we use it todete
t edges in noisy images (see Figure 5.A). We �rst use a generalizedversion of the Rotational Density Kernel Estimator (RDKE) introdu
ed byQiu (1997) to estimate those pixels, whi
h may belong to one of the edges,whi
h 
orrespond to the regression lines in our model. Then, these points areused as observations znN .We 
hoose the RDKE-method be
ause it does not only estimate the pointslying on the edges like other methods do, but also the dire
tion of the jump
urve at these points. This provides 
anoni
al start values for the NewtonRaphson method, namely the lines given by the estimated points and dire
-tions, whi
h we used instead of those given by any two observations (see theremark after (1) in Se
tion 3.2). Applying a multiple test based on the RDKE-method, we found 2199 points, whi
h 
ould belong to one of the edges (seeFigure 5.B). For details see M�uller and Garlipp (2003). On these points, weappli
ate the orthogonal regression estimator with the density of the standardnormal distribution as s
ore fun
tion �. The s
ale parameter sN is 
hoosenwith respe
t to the window size of the RDKE method (for details, see againM�uller and Garlipp (2003)). For de
iding whi
h of the seven found 
enterlines (Figure 5.C) belong to the true 
lusters, we used the absolute height ofthe lo
al maxima. The result is shown in Figure 5.D.
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