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Abstract. We use the local maxima of a redescending M-estimator to identify
clusters, a method proposed already by Morgenthaler (1990) for finding regression
clusters. We work out the method not only for classical regression but also for
orthogonal regression and multivariate locations and give consistency results for all
three cases. The approach of orthogonal regression is applied to the identification
of edges in noisy images.

1 Introduction

For independently and identically distributed random variables Y7,...,Yn,

3

the (location-) M-estimator is defined as (global or some local) maximum of

N
Hy(y) =Y p(Ya —y).

If p' is strictly monotone the objective function is unimodal, so that the
maximum is unique. For example with p(y) = —y2, the maximum is attained
at the mean of the observations. But using score functions with redescending
derivatives, H,(y) can have several local maxima, what especially has the
disadvantage that computation of the M-estimator is more complicated. But
since these local maxima correspond to substructures in the data, they can
be used for clustering.

Section 2 motivates this approach in the case of location clustering. In
Section 3 it is applied to clustering regression data in the case of classical ver-
tical regression (Section 3.1) and in the case of orthogonal regression, which
has several advantages (Section 3.2). In Section 4 the orthogonal regression
method is used for identifying edges in noisy images.

All proofs can be found in Miiller and Garlipp (2003).

2 Clustering with redescending M-estimators

Let yv = (y1n,---,ynnN) be a realization of independently and identically
distributed random variables Y,y € R¥ following a distribution with density
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h. The positions of the local maxima of the density h are considered as true
cluster center points and are denoted by M, i.e.

M := {p € R¥; h(p) has local maximum at u}.

If the distribution of Y5 is a mixture of distributions with unimodal densi-
ties, for example Y,y = w; + E,n with probability v, (3. = 1) and E,n
has density f; with maximum at 0, then the local maxima of the density h
are attained at the maxima p; of the densities f;(- — ;) only if the supports
of the f;(- — p;) do not overlap, what in general is not the case. Nevertheless,
to define the true cluster center points via the maxima of the density & is
more general, since the densities within the clusters are not known in prac-
tice and this definition is even appropriate for the general situation, where
no assumptions for the model are made and only a general density h is used.
Hence the aim is to estimate the positions of the local maxima of h.

Having the result that kernel density estimates are consistent estimates
of the density h (see e.g. Silverman (1986)), we estimate the local maxima of
h and thus the center points by the local maxima of the estimated density
given by the kernel estimator. In Theorem 1 we show the consitency of this
estimator under some regularity conditions. A kernel density estimator for
h(w) is given by

1L 1 Y w

H — (N TR

n=1

where € R¥, p: R¥ — RT is the kernel function and sy € R* \ {0} is
the bandwidth. If sy converges to zero, then Hy(u,yn) converges to h(u)
in probability under some regularity conditions. Hence, the local maxima of
Hy (-, yn), which also can be considered as M-estimates with respect to the
objective function Hn (-, yn), can be used as estimate for the set M.

AR N

Fig. 1. Some one dimensional observations with corresponding score functions and
their sum (objective function) with small (left) and large (right) scale parameter.

Usually p will be a unimodal density. Hence, if the scale parameter sy
is small enough and the distance between the y,n are large enough, ev-
ery ynn is a local maximum. But usually there is so much overlap of the

p (ﬁ (YynnN — ,u)) that none of the y,n is a local maximum (Figure 1). How-

ever, searching the local maxima in increasing direction starting at any y,n
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Fig. 2. Contour plot of the density of the mixture of three two dimensional normal
distributions with generated observations and estimated cluster center points.

should provide the relevant maxima. This is an approach used also by Chu
et al. (1998) for constructing corner preserving M-smoother for image recon-
struction. The consistency of these M-smoothers even at jumps was shown
by Hillebrand and Miiller (2001). A similar proof can be used here for the
consistency of the set

My (yn) := {p € R¥; Hy(p,yn) has local maximum at y}

which is the estimate of the set M of the positions of the true local maxima.
The local maxima of Hy(-,yn) can be found by Newton Raphson method
starting at any y,nv withn=1,..., N.

To avoid problems like ”bump huntig” (see e.g. Donoho (1988)), we need
not only pointwise convergence of Hy (u,yn) to h(u) but additional assump-
tions to achive the consistency of the set My (yn) for the set M. One is the
uniform convergence which can be achieved by intersecting My (yx) with a
compact subset of R¥. Appropriate compact subsets are given by

1
0, = {,uE]Rk; h(p) > 5} with n € N.

Then, with Apaxh” (i) denoting the maximum eigenvalue of h'(u), we have

Theorem 1. If min{|Amaxh” (u)|; u € Mo} > 0, then there exists o € N so
that for all n > ng,e > 0,0 > 0 there exists an No € N with

P(MN(YN) N O, C Us(M) and M C Us(Mn(Yy) N 9,7)) S1—e

for all N > Ny, where Us(M) = {u € RE; there exists a pg € M
with ||p — pol| < 6} and Mg := {u € R¥; h'(u) = 0 and h(u) > 0}.

Figure 2 shows a contour plot of the density h(u) of a mixture of three two

dimensional normal distributions with parameters u; = (0,0)", ¥ = ((1] (1)),

pe=(4,3)7, 5= (11),ns=(4,-3)7, 55 = (L7,) and 1 = 72 = 036,73 =
0.28 with 28 generated obsertations and the three estimated local maxima
(black dots).



4 Garlipp and Miiller

3 Clustering of regression data

3.1 Vertical regression

Regard a mixture of L regression models with different parameter vectors f;.
Then we have observations zy = (z1n, ..., 2vnN),which are realizations of in-
dependently and identically distributed random variables Z,n :=
(X,[y: Yun) T, with

Yon = X;LrNﬁl + Epn

if the n’th observation is coming from the I’th cluster.
In the case of L = 1, the M-estimator for the regression parameter § is
defined as a maximum point of the objective function

N T
~N(B.zN) :%21 (73/”]\’ N”Nﬂ),

where p : R — R* is the score function and sy € R*\{0} is a scale parameter
(see e.g. Huber (1973, 1981), Hampel et al. (1986)).

If p is not convex, what means that the derivative of p is redescending,
then Hy (-, zny) has several local maxima. As Morgenthaler (1990), Hennig
(1997, 2003), and Chen et al. (2001) already proposed, these can be used for
finding regression clusters. Under some regularity conditions for sy — 0 and
p, we have then

H (8, Zx)) 25 h(3 Z%/f (8 - B1)) Gi(da)

in probability for all 5 € RP, where G| is the distribution of X,y coming
from the I’th cluster and f denotes the density function of the distribution
of E,n. Again v; > 0 denotes the probability that the n’th observation is
coming from the I’th cluster and Zle ~; = 1 holds. The function h plays
now the same role as the density & in multivariate density estimation.

Under enough separation the local maxima of h are attained at 81, ..., 8.
Hence as in the multivariate case we regard the positions of the local maxima
of h as the true parameter vectors which shall be estimated. Let M be the
set of the positions of these local maxima, i.e.

M = {p € R?; h(f) has local maximum at 8},
which can be estimated by
Mn(zn) = {8 € RP; Hn(f, zn) has local maximum at (}.

The local maxima of Hy(+,zn) can be found by Newton Raphson method
starting at any hyperplane through (a;le,ymN),...,(z;pN,ynpN) with

{ni,...,np} C{1,...N}.
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As in the multivariate case, My (zn) is a consistent estimator for M if
it is intersected with a compact subset, which is here

0, = {BE]R{”; h(B) > %} with n € N.

However, here the compactness of @, is not always satisfied. In particular,
it is not satisfied if one of the distributions G; is discrete so that regression
experiments with repetitions at finite design points are excluded.

Hence, with Us(M) and Mg as in Theorem 1 we have the

Theorem 2. If @, is compact for all n € N and min{|Amaxh”(B)]; 5 €
Mo} > 0, then there exists ng € N so that for all n > ng,e > 0,6 > 0
there exists an Nog € N with

P(MN(ZN) N6, CUs(M) and M C Us(Mn(Zx) N 9,7)) >1—e
for all N > Nj.

3.2 Orthogonal regression

For orthogonal regression usually an error-in-variable model is assumed. Con-
sidering a mixture of L regressions with parameters (a;,b;) € Si x R,
(S1 = {a € R? : ||a|]| = 1}), this means that we have observations zny =
(z21N,..-,2NN), which are realizations of independent and identically dis-
tributed random variables Z,n := (V,[y, W,n) T, with

(Vn—;\h WnN) = (X;Ns YnN) + (EirnNs E2nN)

for n = 1,...,N, where (X;L'—N,YnN),ElnN,E%N are independent, Xy,
VnNa ElnN € ]Rpila YnN: WnNa E2nN € ]Rz and

X
alT "N = b; almost surely,
YnN

for Z,n coming from the [-th regression.

In the case of L = 1, an M-estimator for (a,b) was proposed by Zamar
(1989) and extends the orthogonal least squares regression estimator. It is
defined as a maximum point of the objective function

N
1 1 a'z,n — b
HN(aabaZN) :NE §p<L>a
n=1

SN
where p : R — R is the score function and sy € R \ {0} is a scale
parameter.
For finding regression clusters, redescending M-estimators for orthogonal
regression were also proposed by Chen et al. (2001). Under some regularity
conditions for sy — 0 and p, we have then

N—00

HN(aa b: ZN) — h(a= b)
in probability for all (a",b) € S; xR, where h(a,b) = f,v 5 . (b) is the density
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Fig. 3. Contour plot of the limit function h(a,b) for a mixture of two nonparal-
lel (left, (a1,b1) = (0.46,0.9), (a2,b2) = (—1.11,-18)) and two parallel (right,
(a1,b1) = (0.46,0.9), (a2,b2) = (0.46,12.4)) regression lines.

of the distribution on a'Z,n. Note that, in opposite to classical vertical
regression, the function h(a,b) again is a density and shows therefore more
relations to the function A in the multivariate case of Section 2. Moreover, as
in Section 3.1, h is independent of p.

If the regression hyperplanes given by (a; ,b;) are enough separated, then
h(a,b) will have local maxima at (a,b) = (ay, by).

See for example Figure 3 for the two-dimensional case with a; = (cos(ay),
sin(ay)) T. Note that the symmetry in Figure 3 is caused by the m-periodicity
of the parameter a. Hence it turns out for orthogonal regression that, for
clusters around nonparallel lines, only two local maxima appear where, for
clusters around two parallel lines, a third local maximum with a rather small
height appears. Figure 4 shows a simulation for both cases. Here, with the
used scale parameter sy = 2, the objective function H,(a,b,z,) has a third
local maximum also in the case of nonparallel lines but again with a smaller
height.

The aim is now to estimate the local maxima of h(a, b), or more precisely,
the set

M :={(a",b) € S; x R; h(a,b) has local maximum at (a',b)}.

As for classical vertical regression, if the derivative of p is redescending,
then Hy(a,b, zn) has several local maxima so that we define

Mny(zn) = (1)
{(a",b) € Sy x R; Hy(a,b,zx) has local maximum at(a',b)}.

The local maxima of Hy(-,2n) can be found as for vertical regression (see
Section 3.1).

As before, the consistency of My (zn) can be shown only if My(zn) is
intersected with the set

6, = {(aTJ)) €51 xR h(a,b) > %}
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Fig.4. True (dashed) and estimated (solid) regression lines in the case of two
nonparallel and two parallel regression lines.

Since a is lying in the compact set S; and h(a,-) is a density function,
the compactness of O, holds here for all distributions of the regressor X,,n.
Hence, orthogonal regression is also in this sense superior to classical vertical
regression where a restriction on the distribution of X,y is necessary to
ensure the compactness of @, (see Section 3.1).

With Us(M) and Mg as in Theorem 1 we have the

Theorem 3. If min{|Amaxh”(a,b)|;(a7,b) € Mo} > 0, then there exists
no € N so that for all n > ng,e > 0,0 > 0 there exists an Ng € N with

P(MN(ZN) N6, C Us(M) and M C Us(Mn(Zx) N en)) >1—e
for all N > Nj.

4 Edge identification

As an application of the orthogonal regression cluster method, we use it to
detect edges in noisy images (see Figure 5.A). We first use a generalized
version of the Rotational Density Kernel Estimator (RDKE) introduced by
Qiu (1997) to estimate those pixels, which may belong to one of the edges,
which correspond to the regression lines in our model. Then, these points are
used as observations z,n.

We choose the RDKE-method because it does not only estimate the points
lying on the edges like other methods do, but also the direction of the jump
curve at these points. This provides canonical start values for the Newton
Raphson method, namely the lines given by the estimated points and direc-
tions, which we used instead of those given by any two observations (see the
remark after (1) in Section 3.2). Applying a multiple test based on the RDKE-
method, we found 2199 points, which could belong to one of the edges (see
Figure 5.B). For details see Miiller and Garlipp (2003). On these points, we
applicate the orthogonal regression estimator with the density of the standard
normal distribution as score function p. The scale parameter sy is choosen
with respect to the window size of the RDKE method (for details, see again
Miiller and Garlipp (2003)). For deciding which of the seven found center
lines (Figure 5.C) belong to the true clusters, we used the absolute height of
the local maxima. The result is shown in Figure 5.D.
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A B C D

Fig. 5. Original image with 100 x 100 pixels, overlayed by normal distributed noise
(A); Estimated jump points, respectively observations zn 2190 (B); Observations
22199 with the estimated cluster lines Maig9(22199) (C); Observations with the three
center lines with the largest maxima (D).
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