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Abstract

Denecke and Müller (2011) presented an estimator for the correlation coefficient
based on likelihood depth for Gaussian copula and Denecke and Müller (2012) proved a
theorem about the consistency of general estimators based on data depth using uniform
convergence of the depth measure. In this article, the uniform convergence of the depth
measure for correlation is shown so that consistency of the correlation estimator based
on depth can be concluded. The uniform convergence is shown with the help of the
extension of the Glivenko-Cantelli Lemma by Vapnik-C̃ervonenkis classes.
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1 Introduction

Different notions of data depth were presented to generalize the median to multivariate data

and more complex situations, see e.g. Tukey (1975), Liu (1990) and Mosler (2002). Now
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there exists a broad class of applications as e.g. in Lin and Chen (2006), Li and Liu (2008),

Romanazzi (2009), López-Pintado and Romo (2009), López-Pintado et al. (2010), Hu et al.

(2009), just to mention some recent results. Rousseeuw and Hubert (1999) developed depth

notions via the nonfit and Mizera (2002) extended this approach to general quality function.

Using the likelihood function as a quality function leads to likelihood depth, see Mizera

and Müller (2004). Estimators maximizing the likelihood depth are robust alternatives to

the nonrobust maximum likelihood estimators (MLE). The estimator based on likelihood

depth is as flexible as the MLE and can be used in many situations. While the MLE is very

sensitive to changes in the underlying distribution, the estimator based on likelihood depth

is not. In particular, these estimators show high robustness against contaminations with

other distributions, see e.g. Denecke and Müller (2011). Denecke and Müller (2012) proved

a high breakdown point and consistency of estimators and tests based on a general depth

notion including likelihood depth for one-dimensional parameters. Thereby consistency of a

depth estimator is shown under uniform convergence of the depth measure.

Using likelihood depth, Denecke and Müller (2011) developed robust estimators for the pa-

rameters of copulas. Applying this approach to the Gaussian copula led to a new robust

estimator of correlation since the parameter ρ of the Gaussian copula is the classical correla-

tion parameter. However, the proof of its consistency is difficult since uniform convergence

of the depth measure must be shown. In this paper, the proof of this uniform convergence

and thus of the consistency of the new correlation estimator is given for ρ 6= 0, i.e. for the

dependent case.

We start in Section 2 with a very short introduction of the likelihood depth for a one-

dimensional parameter. The theorem about consistency of the maximum depth estimator

under uniform convergence of the depth measure is given and the application of the Theorem

of Vapnik-C̃ervonenkis for providing uniform convergence of likelihood depth is presented.

Section 3 presents the new estimator for correlation based on likelihood depth. In Section

4, the uniform convergence and thus the consistency is proved with the Theorem of Vapnik-

C̃ervonenkis. Finally, a small data example in Section 5 shows that the new estimator

behaves similar to the correlation estimator based on the Minimum Covariance Determinant

(MCD) given in Rousseeuw and Leroy (1987).
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2 Consistency of estimators based on likelihood depth

Let be Z1, . . . , ZN i.i.d. with distribution Pθ and density fθ : Rp → R where θ ∈ Θ is an

unknow parameter of an ideal distribution Pθ. We consider here only the case θ ∈ Θ ⊂ R.

Realizations of Z1, . . . , ZN are z1, . . . , zN ∈ Rp. Crucial for the definition of likelihood depth

of a parameter θ ∈ Θ in a sample z∗ = (z1, . . . , zN) are the sets

T θ
pos := {z ∈ Rp; ∂

∂θ
ln fθ(z) ≥ 0}, T θ

neg := {z ∈ Rp; ∂
∂θ

ln fθ(z) ≤ 0},

T θ
0 := {z ∈ Rp; ∂

∂θ
ln fθ(z) = 0}

and the quantities

λ+
N(θ, z∗) := 1

N
♯{n; zn ∈ T θ

pos}, λ−

N(θ, z∗) := 1
N

♯{n; zn ∈ T θ
neg},

λ0
N (θ, z∗) := 1

N
♯{n; zn ∈ T θ

0 }.

Then the likelihood depth of a parameter θ ∈ Θ in a sample z∗ = (z1, . . . , zN) is defined by

dL(θ, z∗) = λ0
N (θ, z∗) + min(λ+

N(θ, z∗), λ
−

N(θ, z∗)),

i.e. the likelihood depth is calculated by counting the observations zn, n = 1, . . . , N , for

which ∂
∂θ

ln fθ(zn) is positive, negative and zero respectively, see e.g. Denecke an Müller

(2011). The maximum likelihood depth estimator θ̃N for the parameter θ is the one in the

parameter-space Θ that has maximum likelihood depth, i.e.

θ̃N (z∗) ∈ arg max
θ∈Θ

dL(θ, z∗).

Müller and Denecke (2012) pointed out, that the maximum likelihood depth estimator is

biased if

pθ,θ := Pθ(T
θ
pos) 6= 1

2
.

In these cases, they show that the estimator converges to a shifted s(θ) 6= θ that is given by

the equation

pθ,s(θ) := Pθ(T
s(θ)
pos ) = 1

2
.

Denecke and Müller also showed that the corrected maximum depth estimator θ̂N (z∗) =

s−1(θ̃N (z∗)) is a consistent estimator under some regularity conditions:
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Proposition 1. Let Pθ0
be the underlying distribution, λ+

θ0
(θ) = Pθ0

(T θ
pos), and λ−

θ0
(θ) =

Pθ0
(T θ

neg). If

a) λ±

N(·, Z∗) converges uniformly almost surely to λ±

θ0
(·),

b) s−1 is continuous,

c) and for all ε > 0 there exists δ > 0, such that

min(λ+
θ0

(θ), λ−

θ0
(θ)) <

1

2
− δ for all θ with |s(θ0) − θ| > ε,

then the maximum depth estimator θ̃N converges to s(θ0) almost surely and the corrected

maximum depth estimator s−1(θ̃N ) converges to θ0.

Hence crucial for the consistency is the uniform convergence of λ±

N . This can be shown

by a generalization of the Glivenko-Cantelli-Lemma. The generalization is the Theorem of

Vapnik-C̃ervonenkis based Vapnik-C̃ervonenkis classes, see e.g. van der Vaart and Wellner

(1996). The definition of a Vapnik-C̃ervonenkis class can be found in van der Vaart and

Wellner (1996), Section 2.6:

Definition 1. Let be C a collection of subsets of a set X . An arbitrary set of n points

{x1, . . . , xn} posses 2n subsets. C picks out a certain subset from {x1, . . . , xn}, if this can be

formed as a set of the form C ∩ {x1, . . . , xn} for C ∈ C. C is said to shatter {x1, . . . , xn} if

each of the 2n subsets can be picked out. The VC-index V (C) of a class C is the smallest n

for which no set of size n is shattered by C. Formally this means

∆n(C, x1, . . . , xn) := ♯{C ∩ {x1, . . . , xn}; C ∈ C},
V (C) := inf{n; max

x1,...,xn

∆n(C, x1, . . . , xn) < 2n}.

A collection C of measurable sets C is called VC-class, if its index is finite.

A corollary of the Theorem of Vapnik-C̃ervonenkis is then:

Corollary 1. If {T θ
pos; θ ∈ Θ} and {T θ

neg; θ ∈ Θ} are VC-classes, then λ±

N(·, Z∗) converges

uniformly almost surely to λ±

θ0
(·).
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If

T θ
pos ( T θ′

pos and T θ′

neg ( T θ
neg for all θ < θ′, (1)

or

T θ
pos ( T θ′

pos and T θ′

neg ( T θ
neg for all θ > θ′. (2)

then the Vapnik-C̃ervonenkis index of {T θ
pos; θ ∈ Θ} as well as of {T θ

neg; θ ∈ Θ} is two. But

this is not satisfied for the likelihood depth of the Gaussian copula.

3 Estimator for the correlation coefficient

In this section we present the estimator for the correlation coefficient ρ based on likelihood

depth for the bivariate Gaussian copula. The bivariate Gaussian copula is given by a bi-

variate normal distribution where the marginals have standard normal distribution. We

asume here that the original data (u1, v1), . . . , (uN , vN) are realizations of i.i.d. random vari-

ables (U1, V1), . . . , (UN , VN) with assumed bivariate normal distribution. To achieve that

the marginal distributions are standard normal distributions, (Un, Vn) are standardized to

Zn = (Xn, Yn) so that Xn and Yn have standard normal distribution. In applications the

standardization is done by estimating the means and the variances of Un and Vn. But for de-

riving the maximum likelihood depth estimator it is assumed that these means and variances

are known. Then the derivative of the log-likelihood function of the standardized variables

Zn = (Xn, Yn) at z = (x, y) ∈ R2 is

∂

∂ρ
ln fρ(x, y) =

−ρy2 + (1 + ρ2) x y + ρ − ρ3 − ρx2

(1 − ρ2)2

(see Denecke and Müller 2011). The next step is to check whether the maximum likelihood

depth estimator is biased, therefore the values for pρ,ρ = Pρ(T
ρ
pos) are calculated. To de-

termine pρ,ρ for a fixed ρ, we need the boundaries of T ρ
pos, which are given by the zeros of

∂
∂ρ

ln fρ(x, y).

For ρ = 0 we have

∂

∂ρ
ln fρ(x, y) =

−0 · y2 + (x + 02 · x)y + 0 − 03 − 0 · x2

(1 − 02)2
= xy.
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This means that ∂
∂ρ

ln fρ(x, y) < 0 if and only if x and y have different sign so that the

probability that a data lies inside the region T ρ
pos is 1

2
. Thus, the parameter with maximum

depth is not asymptotically biased for ρ = 0. However, the situation changes for ρ 6= 0.
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p ρ
ρ

Figure 1: Plot of (ρ, pρ,ρ).

Since the cases ρ > 0 and ρ < 0 are completely similar, we now consider only ρ > 0. In

Denecke and Müller (2011) it was shown that the zeros of ∂
∂ρ

ln fρ(x, y) are

v+(x, ρ) =
ρ2x + x +

√
ρ4x2 − 2ρ2x2 + x2 − 4ρ4 + 4ρ2

2ρ

and

v−(x, ρ) =
ρ2x + x −

√
ρ4x2 − 2ρ2x2 + x2 − 4ρ4 + 4ρ2

2ρ

so that

T ρ
pos = {z = (x, y); v−(x, ρ) ≤ y ≤ v+(x, ρ)}

and

pρ0,ρ = Pρ0
(T ρ

pos) =
1√
2π

∫
∞

−∞

e−
x
2

2

(

Φ

(
v+(x, ρ) − ρ0x√

1 − ρ2
0

)

− Φ

(
v−(x, ρ) − ρ0x√

1 − ρ2
0

))

dx,
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where Φ denotes the one-dimensional standard normal distribution function. Furthermore

we have v−(x, ρ) < x < v+(x, ρ), see also Denecke (2010). The values of pρ,ρ in Figure 1 were

calculated by numerical integration. The graphic shows that the probability pρ,ρ differs from
1
2
, so that the maximum likelihood depth estimator is biased.

The bias function s given by Pρ(T
s(ρ)
pos ) = 1

2
as well as the bias correction function s−1 given

by Ps−1(ρ)(T
ρ
pos) = 1

2
have no explicit form. The function s−1 was approximated in Denecke

and Müller (2011) numerically by

s−1(ρ) = −1.24101 ρ3 + 3.68702 ρ2 − 1.4546 ρ + 0.00857

for ρ > 0 so that the new estimator for the correlation ρ was defined by

ρ̂(z∗) =






−1.24101 ρ̃3 + 3.68702 ρ̃2 − 1.4546 ρ̃ + 0.00857, if ρ̃ ≥ 0.461,

1.24101 ρ̃3 − 3.68702 ρ̃2 + 1.4546 ρ̃− 0.00857, if ρ̃ ≤ −0.461,

0, else,

(3)

where ρ̃ = arg maxρ dL(ρ, z∗). The three cases are caused by the fact that λ+
0 (s(0)) =

P0(T
s(0)
pos ) = 1

2
has three solutions, namely s(0) = 0, s(0) ≈ 0.461, and s(0) ≈ −0.461.
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Figure 2: λ+
ρ0

(ρ) for ρ0 = 0.1, 0.5 and 0.9

4 Consistency of the correlation estimator

Figure 2 shows that the solutions s(ρ) and s−1(ρ) of λ+
ρ (s(ρ)) = Pρ(T

s(ρ)
pos ) = 1

2
and λ+

s−1(ρ)(ρ) =

Ps−1(ρ)(T
ρ
pos) = 1

2
, respectively, are unique for ρ > 0. In particular it holds λ−

ρ0
(ρ) = 1−λ+

ρ0
<

1
2

for ρ < s(ρ0) and λ+
ρ0

(ρ) < 1
2

for ρ > s(ρ0). An analogous result holds for ρ < 0. The

functions s and s−1 are also continuous since pρ0,ρ = Pρ0
(T ρ

pos) is continuous differentiable in

both arguments. Hence conditions b) and c) of Proposition 1 are satisfied.
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However Figure ???????????????????????? shows that neither condition (1) nor condition

(2) is true. But we have the following Theorem:

Theorem 1. {T ρ
pos; 0 < ρ ≤ 1}, {T ρ

neg; 0 < ρ ≤ 1}, {T ρ
pos; −1 ≤ ρ < 0}, and {T ρ

neg; −1 ≤
ρ < 0} are VC-classes, each with VC-index less than 7.

Proof: Because of symmetry, we regard only 0 < ρ ≤ 1. We already elaborated in Section 3

that T ρ
pos = {(x, y) ∈ R2; v−(x, ρ) ≤ y ≤ v+(x, ρ)} holds with

v±(x, ρ) =
1

2ρ

(
x(ρ2 + 1) ±

√
x2(1 − ρ2)2 − 4ρ2(ρ2 − 1)

)
.

Since the density fρ(x, y) for the Gaussian copula (the bivariate normal distribution with

means equal to 0 and variances equal to 1) is symmetric in x and y, it holds

(x, y) ∈ T ρ
pos ⇔ (y, x) ∈ T ρ

pos ⇔ (−x,−y) ∈ T ρ
pos ⇔ (−y,−x) ∈ T ρ

pos.

Thus, for checking (x, y) ∈ T ρ
pos, we can transform (x, y) to (x̃, ỹ), such that x̃ ≥ 0 and ỹ ≤ x̃.

Then (x, y) ∈ T ρ
pos, iff ỹ ≥ v−(x̃, ρ), as ỹ ≤ v+(x̃, ρ) is always true because ỹ ≤ x̃ ≤ v+(x̃, ρ).

Because of this, it is sufficient to consider points (x, y) with x ≥ 0 and y ≤ x.

The next step is to show that for every z = (x, y) there are only finitely many disjunct

intervals [ρi1 , ρi2 ], 0 < ρi1 < ρi2 ≤ 1, such that z ∈ T ρ
pos for ρ ∈ [ρi1 , ρi2 ] and z /∈ T ρ

pos outside

of the intervals. That is true, if v−(x, ·) takes every value only a finite time, i.e. v−(x, ·)
has the slope zero only for a finite number of values. Therefore we regard the derivative of

v−(x, ·). For 0 < ρ < 1, it holds

∂

∂ρ
v−(x, ρ) =

x(ρ2 − 1)
√

x2(1 − ρ2)2 − 4ρ2(ρ2 − 1) + x2(1 − ρ2)2 − 4ρ2(ρ2 − 1)

2ρ2
√

x2(1 − ρ2)2 − 4ρ2(ρ2 − 1)

+
2x2ρ2 − 2x2ρ4 + 8ρ4 − 4ρ2

2ρ2
√

x2(1 − ρ2)2 − 4ρ2(ρ2 − 1)
.

∂
∂ρ

v−(x, ρ) = 0 is true, iff

x(ρ2 − 1)
√

x2(1 − ρ2)2 − 4ρ2(ρ2 − 1) + x2 + 2x2ρ4 + 4ρ4 = 0,

which is equivalent to −4ρ2x4+2ρ4x4−4ρ6x4−3ρ8x4−12ρ4x2+12ρ6x2−8ρ8x2+4ρ2x2+16ρ8 =

0. This is a polynomial with degree 8 for ρ, so it has at most 8 zeros, especially the number
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of zeros is finite. This means for every z = (x, y) with x ≥ 0, y ≤ x that there are at most

l = 9 intervals [ρi1 , ρi2] such that z ∈ T ρ
pos for ρ ∈ [ρi1 , ρi2 ].

Now we show that V (C) < 7. Let be {z1, . . . , z7} with zk = (xk, yk), where it is enough to

consider xk ≥ 0, yk ≤ xk, k = 1, . . . , 7, as discussed above. We already stated that for every

z there are at most l = 9 intervals [ρi1 , ρi2 ] such that z ∈ T ρ
pos for ρ ∈ [ρi1 , ρi2], 1 ≤ i ≤ 9.

Every interval has 2 endpoints, thus there are at most 2 · 9 endpoints for every z. The

first point z1 divides the interval [0, 1] into maximal 2 · 9 + 1 subsets. Every point, that

is added, increases the number of subsets of [0, 1] by at most 2 · 9. All in all we get at

most 7 · 2 · 9 + 1 = 127 subsets. To shatter the seven points, there are 27 = 128 subsets

needed. Therefore not all possible subsets of {z1, . . . , z7} are picked out. Hence the VC-

index of {T ρ
pos; 0 < ρ ≤ 1} is less than 7. Similar proofs provide also the same VC-index of

{T ρ
neg; 0 < ρ ≤ 1}, {T ρ

pos; −1 ≤ ρ < 0}, and {T ρ
neg; −1 ≤ ρ < 0}. 2

Using Corollary 1, the condition a) of Proposition 1 is also satisfied so that we have:

Theorem 2. The corrected maximum likelihood-depth estimator ρ̂ given by (3) is a strongly

consistent estimator for ρ 6= 0.

Since we have P0(T
0
pos) = P0(T

r
pos) = P0(T

−r
pos) = 1

2
for r ≈ 0.461, the consistency does not

hold for ρ = 0.

5 Example

As a data example we use the data set Animals2 of the R-package “robustbase”. A data

frame with average brain and body weights for 62 species of land mammals and three others.

It is a union of the mammals data set of Weisberg (1985) and the animals data set of

Rousseeuw and Leroy (1987). A scatterplot of the log-data is given in Figure 3. We see

that there are three outlying points. To calculate the correlation between the logarithm

of brain and body weights we use Pearson’s correlation coefficient, the robust minimum

covariance determinant estimator (MCD), see Rousseeuw and Leroy (1987), and the corrected

maximum likelihood depth estimator (MLD). For calculating the MLD estimator, the data

are standardized with the arithmetic mean and the standard deviation. Although these

estimators are not robust ????????????, MLD and MCD give the same result, 0.956, what
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Figure 3: Scatterplot of the Animals2 data.

reflects the high correlation of the majority of the data. In contrast, the correlation coefficient

of Pearson, 0.875, is influenced by the three outliers.
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