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Abstract We study the asymptotic behavior of a wide class of kernel
estimators for estimating an unknown regression function. In particular we
derive the asymptotic behavior at discontinuity points of the regression
function. It turns out that some kernel estimators based on outlier robust
estimators are consistent at jumps.
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1 Introduction

We consider the problem of estimating an unknown function µ : [a, b] → < at
a point t0 ∈ [a, b] by observations y−NN , . . . , yNN at points t−NN , . . . , tNN ∈
[a, b]. We assume that the observation ynN is a realization of a random vari-
able YnN = µ(tnN ) + ZnN , n = −N, . . . , N , and that the errors Z−NN , . . . ,
ZNN are independent each with distribution P . One possibility of estimat-
ing µ(t0) is to use kernel estimators. The most well-known kernel estimator
is the mean kernel estimator which is a consistent estimator for smooth func-
tions (see e.g. Eubank 1988). However the mean kernel estimator has the
disadvantage that discontinuities are smoothed. This is not the case if the
mean is replaced by the median. Other estimators which preserve disconti-
nuities are local estimators based on other outlier robust estimators which
follow the majority of the data. In particular high breakdown point estima-
tors have this property. For example estimators with high breakdown point
are the least trimmed squares estimators (Rousseeuw and Leroy 1987) and
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the Cauchy estimator (Huber 1984, Mizera and Müller 1999). The superi-
ority of such estimators for estimating two-dimensional functions appearing
in image denoising was demonstrated in Müller (1999).

For local estimators based on robust estimators not much is known about
their asymptotic properties. For M-estimators with monotone and contin-
uous score function we know from a result of Härdle and Gasser (1984)
that they are consistent estimators for smooth functions µ. However, the
consistency result does not hold for discontinuous or non-monotone score
functions. For the median kernel estimator which has a discontinuous, mono-
tone score function an alternative proof of consistency was given by Koch
(1996) by approximating the discontinuous score function by continuous
score functions. Chu et al. (1998) treat the asymptotic behavior of a spe-
cial M-estimator with redescending score function. But this approach does
not include the most commonly used M-estimators with redescending score
function as the Cauchy estimator. Also open is the consistency of other local
estimators based on robust estimators as the least trimmed squares estima-
tors. Moreover up to now, all consistency results concern smooth functions
µ.

Here we present the asymptotic behavior of local estimators based on
robust estimators. In particular we study their asymptotic behavior at dis-
continuity points of µ.

2 The model and the estimators

To model discontinuities we assume that µ(t) = µ1(t) for t ≤ t0, and µ(t) =
µ2(t) for t > t0. Each function µ1, µ2 : [a, b] → < has two continuous
derivatives. Since µ1 and µ2 can be different, we have a jump at the point t0.
Let c = µ2(t0)−µ1(t0) be the size of the jump and let Pθ the distribution of
any random variable given by θ+Z where Z has distribution P . Now set θ =
µ1(t0). Then µ1(t0)+Z has distribution Pθ and µ2(t0)+Z has distribution
Pθ+c. Let Pθ,α = αPθ + (1 − α)Pθ+c be a mixture of the distributions Pθ

and Pθ+c with fixed α ∈ (0, 1).
As estimator for θ = µ1(t0) based on yN = (y−NN , . . . , yNN )> we use

any estimator θ̂N : <2N+1 → < which is asymptotically linear at Pθ,α, i.e.
which satisfies

√
2N + 1

(
θ̂N (YN )− θ̂(Pθ,α)− 1

2N + 1

N∑

n=−N

ψ(YnN )

)
−→ 0 (1)

in probability if YN = (Y−NN , . . . , YNN ) and YnN has distribution Pθ,α

for n = −N, . . . , N , where
∫

ψ dPθ,α = 0 and θ̂ is a functional on proba-
bility measures. Similarly, condition (1) is satisfied as well if YnN has dis-
tribution Pθ for tnN ≤ t0, YnN has distribution Pθ+c for tnN > t0, and∑N

n=−N 1(−∞,t0](tnN ) = d(2N + 1)αe. There are many examples of esti-
mators satisfying this asymptotic linearity condition. The median, Fréchet
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differentiable estimators as many M-estimators like the Cauchy estimator
(Clarke 1983) and least trimmed squares estimators (Bednarski and Clarke
1993) are among them. Hence the kernel estimators considered in this paper
are estimators based on an asymptotically linear estimator and the rectan-
gular kernel.

3 Asymptotic behavior

To derive the asymptotic behavior of kernel estimators based on asymptot-
ically linear estimators we make the classical assumption of nonparametric
regression that, with growing sample size N , the division of the interval [a, b]
becomes finer and the support of the kernel, the band, becomes smaller al-
though it contains more and more division points. The idea behind classical
asymptotic considerations in nonparametric regression is that the observa-
tions behave within the band asymptotically like identically distributed ob-
servations, i.e. that the observations behave like having all the distribution
Pθ. Usually this fact is not used directly in classical proofs of nonparametric
regression. But it can be used directly by applying the concept of contiguous
distributions. If there is a jump within the band then the identical distri-
bution is destroyed. However, if the proportion of the band on the lefthand
and righthand side of the jump point t0 is converging, say against α and
(1−α), respectively, then the observations behave like YnN having distribu-
tion Pθ for tnN ≤ t0 and distribution Pθ+c for tnN > t0. Hence contiguous
distributions can be used also in this situation.

If YnN = µ1(tnN ) + ZnN for tnN ≤ t0 and YnN = µ2(tnN ) + ZnN for
tnN > t0 we denote the distribution of YN = (Y−NN , . . . , YNN ) by

QN =
⊗

tnN≤t0

Pµ1(tnN ) ⊗
⊗

tnN >t0

Pµ2(tnN ).

If YnN = θ + ZnN for tnN ≤ t0 and YnN = θ + c + ZnN for tnN > t0 we
denote the distribution of YN = (Y−NN , . . . , YNN ) by

PN =
⊗

tnN≤t0

Pθ ⊗
⊗

tnN >t0

Pθ+c,

where we set θ = µ1(t0). The proof of the asymptotic distribution of our
estimators bases mainly on the fact that QN is contiguous to PN . Then
due to the Third Lemma of LeCam (see for example Hájek and Šidák 1967,
p. 208), we must only derive the asymptotic distribution of the estimators
under PN .

We make the following assumptions:
A) tnN = t0N + n

N
√

2N+1
for n = −N, . . . , N , where Nα := d(2N + 1)αe =

∑N
n=−N 1(−∞,t0](tnN ).

B) µ1(t) = m1(t)+ θ and µ2(t) = m2(t)+ θ + c, where m1 and m2 have two
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continuous derivatives and satisfy m1(t0) = 0 = m2(t0).

C) The distribution P of the errors ZnN is the normal distribution with
expectation equal to zero or has a λ-density f satisfying the following con-
ditions: f has three continuous derivatives and there exists M > 0 and ε > 0
with∣∣∣ f ′(z)

f(z)

∣∣∣ ≤ M,
∣∣∣ f ′′(z)

f(z)

∣∣∣ ≤ M, sup|δ|≤ε

∣∣∣ f ′′′(z+δ)
f(z)

∣∣∣ ≤ M, for all z ∈ <.

D) The estimator θ̂N satisfies property (1) for PN , where
∫

ψ dPθ,α = 0.

If fθ and fθ+c denotes the densities of Pθ and Pθ+c, respectively, we have
the following result on the asymptotic behavior of an asymptotically linear
estimator θ̂N at jumps.

Theorem 1 If the Assumptions A) - D) are satisfied, then the asymptotic
distribution of

√
2N + 1

(
θ̂N (YN )− θ̂(Pθ,α)

)
under QN is a normal distri-

bution with expectation

α2

∫
ψθ f ′θ dλ µ′1(t0)− (1− α)2

∫
ψθ+c f ′θ+c dλ µ′2(t0)

and variance

α

∫
ψ2

θ dPθ + (1− α)
∫

ψ2
θ+c dPθ+c,

where ψθ(y) = ψ(y)− ∫
ψdPθ.

If θ̂(Pθ,α) = θ then the estimator θ̂N is weakly consistent at jumps,
since the convergence in distribution of

√
2N + 1(θ̂N (YN ) − θ) implies al-

ways the convergence in probability of θ̂N (YN ) to θ. However the property
θ̂(Pθ,α) = θ is not often satisfied. The median satisfies this property only if
the jump c is equal to zero or P is concentrated at one point and α > 1

2 . But
for the least trimmed squares estimator, this property is also satisfied if P
has compact support, the jump c is large enough and 1− α is smaller than
the proportion of trimmed observations. Hence the least trimmed squares
estimator is more often consistent at jumps than the median. Since α cannot
be 1

2 , the consistency at jumps derived here is only a special form of con-
sistency. Moreover, α 6= 1

2 implies that there is usually an asymptotic bias
expressed by the expectation of the asymptotic normal distribution which
is unequal to zero.

However, for finite sample sizes N , the condition α > 1
2 is no restriction.

Since the rectangular kernel has always an odd number of support points,
the proportion of points tnN with tnN ≤ t0 is always greater than 1

2 if t0
lies in the center of the kernel. Hence, for approximating the finite sample
behavior of the estimators by the asymptotic distribution, the condition
α > 1

2 is even useful.
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If there is no jump at t0, that is c = 0, then many estimators satisfy
(1) and θ̂(Pθ,α) = θ and this holds for α 6= 1

2 and α = 1
2 as well. Hence

Theorem 1 provides the weak consistency of a wide class of estimators. Also
in this case, an asymptotic bias can appear. However this asymptotic bias is
zero if α = 1

2 and µ′1(t0) = µ′2(t0). This means that the center of the kernel
is t0 and that µ is not only continuous but also differentiable at t0 which
are the assumptions used by Eubank (1988, p. 147) for the mean kernel
estimators and by Härdle and Gasser (1984) for the M-kernel estimators.
While our results are more general in the direction that they concern a wide
class of estimators and jumps, the results of Eubank, Härdle and Gasser are
more general in the direction of different choices of the bandwidth. Our case
concerns only the case that the bandwidth is chosen as λ = N−1/3.

4 Proof of the theorem

The proof of the theorem bases on the following lemmata.

Lemma 1 Under Assumptions A) and B) we have

a) |m1(tnN )| = O

(
1√
N

)
, |m2(tnN )| = O

(
1√
N

)
, for n = −N, . . . , N,

b) lim
N→∞

1√
2N + 1

N∑

n=−N

1(−∞,t0](tnN ) m1(tnN ) = m′
1(t0) (−α2),

lim
N→∞

1√
2N + 1

N∑

n=−N

1(t0,∞)(tnN ) m2(tnN ) = m′
2(t0) (1− α)2,

c) lim
N→∞

N∑

n=−N

1(−∞,t0](tnN ) m1(tnN )2 = m′
1(t0)

2 a1,

lim
N→∞

N∑

n=−N

1(t0,∞)(tnN ) m2(tnN )2 = m′
2(t0)

2 a2,

where a1, a2 ∈ (0,∞) are given by

a1 = lim
N→∞

N∑

n=−N

1(−∞,t0](tnN ) (tnN − t0)2,

a2 = lim
N→∞

N∑

n=−N

1(t0,∞)(tnN ) (tnN − t0)2.

Proof
a) Taylor expansion and the property

n

N
√

2N + 1
+

1√
2N + 1

− Nα

N
√

2N + 1
< tnN − t0 ≤ (2)

n

N
√

2N + 1
+

1√
2N + 1

− Nα

N
√

2N + 1
+

1
N
√

2N + 1
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provide for example for m1

|m1(tnN )| = |m′
1(t̃nN ) (tnN − t0)| = O

(
1√
N

)
.

b) Taylor expansion and property (2) provide

1√
2N + 1

N∑

n=−N

1(−∞,t0](tnN )m1(tnN )

=
1√

2N + 1

N∑

n=−N

1(−∞,t0](tnN ) (m′
1(t0)(tnN − t0)

+
1
2

m′′
1(t̃nN )(tnN − t0)2

)

=
1√

2N + 1

N∑

n=−N

1(−∞,t0](tnN )
(

m′
1(t0)(tnN − t0) + O

(
1
N

))
.

Since

lim
N→∞

1√
2N + 1

N∑

n=−N

1(−∞,t0](tnN ) (tnN − t0) = −α2, (3)

the assertion is proved for m1. For m2 the assertion follows similarly by
using

lim
N→∞

1√
2N + 1

N∑

n=−N

1(t0,∞)(tnN ) (tnN − t0) = (1− α)2

instead of property (3).
c) Taylor expansion provides for example for m1

N∑

n=−N

1(−∞,t0](tnN )m1(tnN )2

=
N∑

n=−N

1(−∞,t0](tnN )
(

m′
1(t0)(tnN − t0) +

1
2
m′′

1(t̃nN )(tnN − t0)2
)2

=
N∑

n=−N

1(−∞,t0](tnN )
(

m′
1(t0)

2(tnN − t0)2 + O

(
1

N
√

N

))
.ut
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Lemma 2 Let be g1, g2 : < → < functions such that
∫

g1(y)2Pθ(dy) < ∞
and

∫
g2(y)2Pθ+c(dy) < ∞. Then we have under the Assumptions A) and

B) with a1 and a2 from Lemma 1 c)

N∑

n=−N

1(−∞,t0](tnN ) g1(YnN ) m1(tnN )2

+
N∑

n=−N

1(t0,∞)(tnN ) g2(YnN ) m2(tnN )2

N→∞−→
∫

g1(y)Pθ(dy) m′
1(t0)

2 a1 +
∫

g2(y)Pθ+c(dy) m′
2(t0)

2 a2

in probability under PN .

Proof
Chebychev inequality and Lemma 1 c) provide the assertion. ut

Proof of the Theorem
Since f is the density of the error distribution P , the density fθ of Pθ has
the form fθ(y) = f(y − θ). The same holds for the densities fθ+c, fµ1(tnN ),

fµ2(tnN ) of Pθ+c, Pµ1(tnN ), Pµ2(tnN ). Let be gθ = − f ′θ
fθ

and hθ = f ′′θ
fθ

and
denote by pN the λN -density of PN and by qN the λN -density of QN . For
using LeCam’s third lemma (see e.g. Hájek and Šidák 1967, p. 208) we need
a representation of log qN

pN
.

If the errors have a normal distribution, then we have for tnN ≤ t0

log
fµ1(tnN )(ynN )

fθ(ynN ) = − 1
2σ2

[
(ynN − µ1(tnN ))2 − (ynN − θ)2

]

= − 1
2σ2

[−2(ynN − θ)m1(tnN ) + m1(tnN )2
]

= gθ(ynN )m1(tnN )− 1
2

1
σ2 m1(tnN )2,

and analogously for tnN > t0

log
fm2(tnN )(ynN )

fθ+c(ynN ) = gθ+c(ynN )m2(tnN )− 1
2

1
σ2 m2(tnN )2.

If the errors have not a normal distribution, then Taylor expansion,
Lemma 1 a) and Assumption C) provide for tnN ≤ t0

fµ1(tnN )(ynN )
fθ(ynN )

=
f(ynN − µ1(tnN ))

fθ(ynN )
=

fθ(ynN −m1(tnN ))
fθ(ynN )

= 1− f ′θ(ynN )
fθ(ynN )

m1(tnN ) +
1
2

f ′′θ (ynN )
fθ(ynN )

m1(tnN )2

− 1
6

f ′′′θ (ynN + m̃nN )
fθ(ynN )

m1(tnN )3

= 1 + gθ(ynN )m1(tnN ) +
1
2

hθ(ynN )m1(tnN )2 + O
(
N−3/2

)
.
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Set ρ(y) = log(1+y)−y + 1
2y2. Then ρ is strictly increasing for y > −1 and

limy→0
ρ(y)
y2 = 0. Assumption C) and Lemma 1 a) imply that there exists a

constant M0 with

N

∣∣∣∣ρ
(

gθ(ynN )m1(tnN ) +
1
2

hθ(ynN ) m1(tnN )2 + O
(
N−3/2

))∣∣∣∣

≤ N max
{∣∣∣∣ρ

(
M0√

N

)∣∣∣∣ ,

∣∣∣∣ρ
(−M0√

N

)∣∣∣∣
}

N→∞−→ 0.

This implies

log
(

fµ1(tnN )(ynN )
fθ(ynN )

)

= gθ(ynN ) m1(tnN ) +
1
2

hθ(ynN )m1(tnN )2 + O
(
N−3/2

)

−1
2

gθ(ynN )2 m1(tnN )2 + O
(
N−3/2

)

+ρ

(
gθ(ynN )m1(tnN ) +

1
2

hθ(ynN )m1(tnN )2 + O
(
N−3/2

))

= gθ(ynN ) m1(tnN ) +
1
2

hθ(ynN )m1(tnN )2 − 1
2

gθ(ynN )2 m1(tnN )2

+O
(
N−3/2

)
+ o(N−1).

An analoguous expression holds for tnN > t0 where gθ and hθ are replaced
by gθ+c and hθ+c. Since

∫ f ′′(y)
f(y) P (dy) =

∫
f ′′(y)dy = 0, Lemma 2 implies

N∑

n=−N

(
1(−∞,t0](tnN ) hθ(YnN )m1(tnN )2

+ 1(t0,∞)(tnN ) hθ+c(YnN )m2(tnN )2
)

N→∞−→
∫

hθ(y)Pθ(dy) m′
1(t0)

2 a1 +
∫

hθ+c(y)Pθ+c(dy) m′
2(t0)

2 a2 = 0

in probability under PN . Thus we have

log
qN (YN )
pN (YN )

=
N∑

n=−N

(
1(−∞,t0](tnN ) gθ(YnN )m1(tnN )

+ 1(t0,∞)(tnN ) gθ+c(YnN )m2(tnN )

− 1
2

1(−∞,t0](tnN ) gθ(YnN )2 m1(tnN )2

− 1
2

1(t0,∞)(tnN ) gθ+c(YnN )2 m2(tnN )2
)

+ O(N−1/2) + oP N (N0).
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This representation of log qN (YN )
pN (YN ) holds also for normally distributed errors

since, according to Lemma 2,

N∑

n=−N

(
1(−∞,t0](tnN )

1
σ2

m1(tnN )2 + 1(t0,∞)(tnN )
1
σ2

m2(tnN )2
)

behaves in probability like

N∑

n=−N

(
1(−∞,t0](tnN ) gθ(YnN )2 m1(tnN )2

+ 1(t0,∞)(tnN ) gθ+c(YnN )2 m2(tnN )2
)
.

Let a and b be arbitrary real numbers and set

WnN (y) := a
ψ(y)√
2N + 1

+ b
(
1(−∞,t0](tnN ) gθ(y)m1(tnN ) + 1(t0,∞)(tnN ) gθ+c(y)m2(tnN )

)
.

We are now going to derive the asymptotic distribution of WN :=∑N
n=−N WnN (YnN ) under PN by checking Lindeberg’s condition. Since∫
gθ(y)Pθ(dy) = − ∫

f ′θ(y)dy = 0 =
∫

gθ+c(y)Pθ+c(dy) and∫
ψ(y)Pθ,α(dy) = 0, the expectation of WN satisfies

|E(WN )| =
∣∣∣∣∣
−N+Nα−1∑

n=−N

a√
2N + 1

∫
ψ(y)Pθ(dy) + b

∫
gθ(y)Pθ(dy)m1(tnN )

+
N∑

n=−N+Nα

a√
2N + 1

∫
ψ(y)Pθ+c(dy)

+ b

∫
gθ+c(y)Pθ+c(dy)m2(tnN )

∣∣∣∣

= |a|
∣∣∣∣

Nα√
2N + 1

∫
ψ(y)Pθ(dy) +

2N + 1−Nα√
2N + 1

∫
ψ(y)Pθ+c(dy)

∣∣∣∣

≤ |a|
√

2N + 1
(∣∣∣∣

Nα

2N + 1
− α

∣∣∣∣
∣∣∣∣
∫

ψ(y)Pθ(dy)
∣∣∣∣

+
∣∣∣∣
2N + 1−Nα

2N + 1
− (1− α)

∣∣∣∣
∣∣∣∣
∫

ψ(y)Pθ+c(dy)
∣∣∣∣

+
∣∣∣∣α

∫
ψ(y)Pθ(dy) + (1− α)

∫
ψ(y)Pθ+c(dy)

∣∣∣∣
)

≤ |a|
√

2N + 1
(

1
2N + 1

∣∣∣∣
∫

ψ(y)Pθ(dy)
∣∣∣∣ +

1
2N + 1

∣∣∣∣
∫

ψ(y)Pθ+c(dy)
∣∣∣∣

+
∣∣∣∣
∫

ψ(y) Pθ,α(dy)
∣∣∣∣
)

N→∞−→ = 0.
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By using Lemma 1 b) and c), we obtain for the variance S2
1N of∑N

n=−N 1(−∞,t0](tnN ) WnN (YnN )

S2
1N =

−N+Nα−1∑

n=−N

∫
(WnN (y)− E(WnN (YnN )))2 Pθ(dy)

=
−N+Nα−1∑

n=−N

∫ (
a

ψ(y)− ∫
ψ dPθ√

2N + 1
+ b gθ(y)m1(tnN )

)2

Pθ(dy)

= a2 Nα

2N + 1

∫
ψ2

θ dPθ + b2

∫
g2

θ dPθ

−N+Nα−1∑

n=−N

m1(tnN )2

+2ab

∫
ψθ gθ dPθ

1√
2N + 1

−N+Nα−1∑

n=−N

m1(tnN )

N→∞−→ a2 α

∫
ψ2

θ dPθ + b2

∫
g2

θ dPθ m′
1(t0)

2 a1

+ 2ab

∫
ψθ gθ dPθ m′

1(t0) (−α2).

An analoguous expression holds for the variance S2
2N of∑N

n=−N 1(t0,∞)(tnN ) WnN (YnN ) so that the variance S2
N := S2

1N + S2
2N

of
∑N

n=−N WnN (YnN ) converges to s2 := a2σ2
1 + b2σ2

2 + 2abσ12, where

σ2
1 := α

∫
ψ2

θ dPθ + (1− α)
∫

ψ2
θ+c dPθ+c,

σ2
2 :=

∫
g2

θ dPθ m′
1(t0)

2 a1 +
∫

g2
θ+c dPθ+c m′

2(t0)
2 a2,

σ12 :=
∫

ψθ gθ dPθ m′
1(t0) (−α2) +

∫
ψθ+c gθ+c dPθ+c m′

2(t0) (1− α)2.

Moreover, according to Lemma 1 a), there exists a constant M0 such that
with Lemma 1 b) and c)

−N+Nα−1∑

n=−N

∫

|WnN (y)|>εSN

(WnN (y)− E(WnN (YnN )))2 Pθ(dy)

≤ a2 Nα

2N + 1

∫

|aψ(y)|+|bgθ(y) M0|>εSN

√
N

ψ2
θ dPθ

+ b2

∫

|aψ(y)|+|bgθ(y) M0|>εSN

√
N

g2
θ dPθ

−N+Nα−1∑

n=−N

m1(tnN )2

+ 2ab

∫

|aψ(y)|+|bgθ(y) M0|>εSN

√
N

ψθ gθ dPθ
1√

2N + 1

−N+Nα−1∑

n=−N

m1(tnN )

N→∞−→ 0.
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The same holds for the sum over tnN > t0. Hence Lindeberg’s condition is
satisfied so that the asymptotic distribution of WN under PN is a normal
distribution with expectation 0 and variance s2. Then, using the represen-
tation (1) of the estimators and the convergence of

N∑

n=−N

(
1(−∞,t0](tnN ) gθ(YnN )2 m1(tnN )2

+ 1(t0,∞)(tnN ) gθ+c(YnN )2 m2(tnN )2
)

towards σ2
2 according to Lemma 2, the asymptotic distribution under PN

of

a
√

2N + 1
(
θ̂N (YN )− θ̂(Pθ,α)

)
+ b log

qN (YN )
pN (YN )

is a normal distribution with expectation −b 1
2σ2

2 and variance s2. The
Cramer-Wold device (see e.g. Serfling 1980, p. 18) and LeCam’s third lemma
(see e.g. Hájek and Šidák 1967, p. 208) provide the asymptotic distribution
of
√

2N + 1
(
θ̂N (YN )− θ̂(Pθ,α)

)
under QN and thus the assertion of the

theorem. ut
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