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Abstract We study the asymptotic behavior of a wide class of kernel
estimators for estimating an unknown regression function. In particular we
derive the asymptotic behavior at discontinuity points of the regression
function. It turns out that some kernel estimators based on outlier robust
estimators are consistent at jumps.
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1 Introduction

We consider the problem of estimating an unknown function 4 : [a,b] — R at
a point ty € [a, b] by observations y_nyn,...,ynvn at pointst_nn, ..., tNN €
[a, b]. We assume that the observation y,y is a realization of a random vari-
able Y,y = u(tnn) + Znn, n = —N, ..., N, and that the errors Z_pnp, ...,
Znn are independent each with distribution P. One possibility of estimat-
ing p(to) is to use kernel estimators. The most well-known kernel estimator
is the mean kernel estimator which is a consistent estimator for smooth func-
tions (see e.g. Eubank 1988). However the mean kernel estimator has the
disadvantage that discontinuities are smoothed. This is not the case if the
mean is replaced by the median. Other estimators which preserve disconti-
nuities are local estimators based on other outlier robust estimators which
follow the majority of the data. In particular high breakdown point estima-
tors have this property. For example estimators with high breakdown point
are the least trimmed squares estimators (Rousseeuw and Leroy 1987) and
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the Cauchy estimator (Huber 1984, Mizera and Miiller 1999). The superi-
ority of such estimators for estimating two-dimensional functions appearing
in image denoising was demonstrated in Miiller (1999).

For local estimators based on robust estimators not much is known about
their asymptotic properties. For M-estimators with monotone and contin-
uous score function we know from a result of Hérdle and Gasser (1984)
that they are consistent estimators for smooth functions p. However, the
consistency result does not hold for discontinuous or non-monotone score
functions. For the median kernel estimator which has a discontinuous, mono-
tone score function an alternative proof of consistency was given by Koch
(1996) by approximating the discontinuous score function by continuous
score functions. Chu et al. (1998) treat the asymptotic behavior of a spe-
cial M-estimator with redescending score function. But this approach does
not include the most commonly used M-estimators with redescending score
function as the Cauchy estimator. Also open is the consistency of other local
estimators based on robust estimators as the least trimmed squares estima-
tors. Moreover up to now, all consistency results concern smooth functions
.

Here we present the asymptotic behavior of local estimators based on
robust estimators. In particular we study their asymptotic behavior at dis-
continuity points of u.

2 The model and the estimators

To model discontinuities we assume that u(t) = py(t) for t < to, and p(t) =
ua(t) for t > to. Each function pq,us : [a,b] — R has two continuous
derivatives. Since p1 and po can be different, we have a jump at the point ¢g.
Let ¢ = pa(to) — p1(to) be the size of the jump and let Py the distribution of
any random variable given by 8+ Z where Z has distribution P. Now set § =
11 (to). Then i (to) + Z has distribution Py and ps(to) + Z has distribution
Pyic. Let Py o = aPy + (1 — o) Ppy. be a mixture of the distributions Py
and Py, with fixed o € (0,1).

As estimator for 6 = p(tg) based on yny = (Yy_nN,---,YNN) | We use
any estimator Oy : R2N+1 R which is asymptotically linear at Py q, i.e.
which satisfies

N
V2N +1 (éN(YN) —0(Py0) — 2N1+ - w(YnN)> —0 (1)

in probability if Y = (Y_nn,...,Ynn) and Y,n has distribution Py,
forn = —N,...,N, where [¢dPy, = 0 and 6 is a functional on proba-
bility measures. Similarly, condition (1) is satisfied as well if Y,y has dis-
tribution Py for t,n < to, Y,n has distribution Py, for t,n > to, and
ZngN L(—oo,to](tnv) = [(2N + 1)a]. There are many examples of esti-
mators satisfying this asymptotic linearity condition. The median, Fréchet
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differentiable estimators as many M-estimators like the Cauchy estimator
(Clarke 1983) and least trimmed squares estimators (Bednarski and Clarke
1993) are among them. Hence the kernel estimators considered in this paper
are estimators based on an asymptotically linear estimator and the rectan-
gular kernel.

3 Asymptotic behavior

To derive the asymptotic behavior of kernel estimators based on asymptot-
ically linear estimators we make the classical assumption of nonparametric
regression that, with growing sample size N, the division of the interval [a, b]
becomes finer and the support of the kernel, the band, becomes smaller al-
though it contains more and more division points. The idea behind classical
asymptotic considerations in nonparametric regression is that the observa-
tions behave within the band asymptotically like identically distributed ob-
servations, i.e. that the observations behave like having all the distribution
Py. Usually this fact is not used directly in classical proofs of nonparametric
regression. But it can be used directly by applying the concept of contiguous
distributions. If there is a jump within the band then the identical distri-
bution is destroyed. However, if the proportion of the band on the lefthand
and righthand side of the jump point ¢ is converging, say against « and
(1—a), respectively, then the observations behave like Y;, ; having distribu-
tion Py for t,n <ty and distribution Py, for t,n > to. Hence contiguous
distributions can be used also in this situation.

If Yoy = pi(teun) + Znn for t,ny < to and Yoy = po(tan) + Znn for
tnn > to we denote the distribution of Yy = (Y_nn,...,YNN) by

QN: ® Pm(tnzv)® ® PM(tnN)'

tonn <to tnN>1o

tY,n =0+ 2,y for t,n <ty and Y,y =0+ c+ Z,n for t,n > tg we
denote the distribution of Yy = (Y—NN, R YNN) by

PN: ® P|9® ® P9+c,

tnN <to tnN>to

where we set 6 = p1(to). The proof of the asymptotic distribution of our
estimators bases mainly on the fact that Q" is contiguous to PY. Then
due to the Third Lemma of LeCam (see for example Hajek and Sidék 1967,
p. 208), we must only derive the asymptotic distribution of the estimators
under PV,
We make the following assumptions:

A) toy =ton + ~uavyT forn=—N,...,N, where N, := [2N 4+ 1)a] =
Yo v L—oorto] (tnn)-

B) p1(t) = mi(t) 4+ 6 and po(t) = ma(t) + 60 + ¢, where my and mgy have two
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continuous derivatives and satisfy my(to) = 0 = ma(to).

C) The distribution P of the errors Z,n is the normal distribution with
expectation equal to zero or has a A-density f satisfying the following con-
ditions: f has three continuous derivatives and there exists M > 0 and € > 0
with

f(2)
f(2)

<M, supsi<.

()
=M, ’ )

f’”f(é*)'fs)‘ < M, for all z € R.

D) The estimator Oy satisfies property (1) for PN, where [ dPy o = 0.

If fo and fy. denotes the densities of Py and Py, respectively, we have
the following result on the asymptotic behavior of an asymptotically linear
estimator 6y at jumps.

Theorem 1 If the Assumptions A) - D) are satisfied, then the asymptotic
distribution of /2N + 1 (éN(YN) — é(Pg)a)) under QY is a normal distri-
bution with expectation

o [ o fydhi(to) = (=) [ s S, dN st
and variance
o [widre+ (1-a) [ vh, dPuse,
where Yo(y) = P(y) — [ PdPy.

It é(Pg,a) = @ then the estimator 6y is weakly consistent at jumps,
since the convergence in distribution of v2N + 1(Ax (Yx) — ) implies al-
ways the convergence in probability of 0 ~(Yn) to 6. However the property
0(Py.) = 6 is not often satisfied. The median satisfies this property only if
the jump c is equal to zero or P is concentrated at one point and o > % But
for the least trimmed squares estimator, this property is also satisfied if P
has compact support, the jump c is large enough and 1 — « is smaller than
the proportion of trimmed observations. Hence the least trimmed squares
estimator is more often consistent at jumps than the median. Since o cannot
be %, the consistency at jumps derived here is only a special form of con-
sistency. Moreover, o # % implies that there is usually an asymptotic bias
expressed by the expectation of the asymptotic normal distribution which
is unequal to zero.

However, for finite sample sizes N, the condition @ > % is no restriction.
Since the rectangular kernel has always an odd number of support points,
the proportion of points ¢,y with ¢,y < tg is always greater than % if ¢
lies in the center of the kernel. Hence, for approximating the finite sample
behavior of the estimators by the asymptotic distribution, the condition
o> % is even useful.
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If there is no jump at tg, that is ¢ = 0, then many estimators satisfy
(1) and 8(Pp) = 0 and this holds for o # 1 and o = } as well. Hence
Theorem 1 provides the weak consistency of a wide class of estimators. Also
in this case, an asymptotic bias can appear. However this asymptotic bias is
zero if v = § and pi} (to) = ph(to). This means that the center of the kernel
is tg and that p is not only continuous but also differentiable at ¢ty which
are the assumptions used by Eubank (1988, p. 147) for the mean kernel
estimators and by Hérdle and Gasser (1984) for the M-kernel estimators.
While our results are more general in the direction that they concern a wide
class of estimators and jumps, the results of Eubank, Hardle and Gasser are
more general in the direction of different choices of the bandwidth. Our case
concerns only the case that the bandwidth is chosen as A = N~1/3,

4 Proof of the theorem

The proof of the theorem bases on the following lemmata.

Lemma 1 Under Assumptions A) and B) we have

a) |miltan)| = O <\/1ﬁ>  [ma(tan)] = O (&) , forn=—N,...,N,

b) lim ) ml(tnN) = m/l(tO) (7(12)7

N

1
e 1, tn
NHoo1/2N+1n:Z_N ( oo,to]( N

) ma(tnn) = mh(to) (1 — @)?,

N
1
lim ——— > L0 (b
N—oo 2N +1 4=~ )t

N
) Jm 37 Ao pta) b = i 10)* an
N
A}iinoo L(tg,00) (tn) ma(tan)? = mh(to)? as,
n=—N

where ay, as € (0,00) are given by

N
ap = lim > 1oopg)(tnn) (tnn —t0)?,

N—o0

n=—N
N
_ PR
ag = ngnoo Z Litg,00) (tnv) (tnn —to)”.
n=—N
Proof
a) Taylor expansion and the property
n 1 o
+ — <th,n —to < 2
NVZN+1 V2N+1 NyaNt1 "N @)
n 1 Ng 1

+ - +
NV2N+1 V2N+1 NV2N+1 NV2N +1
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provide for example for my

121 (be)| = 1, (Fuy) (ny — to)] = O (;N) .

b) Taylor expansion and property (2) provide

1 N

—_— Z 1(_Oo7t0](tnN)m1(tnN)
V2N +1 —,
1 N
S 1y () (1)t — o)
VAN +1 ’
1 ~
+3 my (tan) (tny — to)2>
1 al 1
_ \/ﬁ n:Z_N (oot (tnnv) (m’l(to)(tnjv —ty)+ O (N)) .

Since

N
1
lim ——— Lo s 1(bun) (tan — to) = —a2, 5

the assertion is proved for m,. For my the assertion follows similarly by
using

N

1
lim ———— Lt ooy (tnn) (bnn —t0) = (1 — a)?
N \/2N+1n:§_:N ooy {Eniv) {Fnay = f0) = (1= 0]

instead of property (3).
¢) Taylor expansion provides for example for m;

N
Z 1(—007%] (tnN)ml(tnN)2
n=—N
N

D Lcooty)(tan) (mﬁ (to)(tnn —to) + %mﬁl(an)(tnN - t0)2)

n=—N

niN L(—co,to] (tnN) (m’l(to)Q(tnN —10)2+0 (N\l/ﬁ)> 0
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Lemma 2 Let be g1, g2 : R — R functions such that [ g1(y)*Py(dy) < oo
and [ g2(y)*Py+c(dy) < co. Then we have under the Assumptions A) and
B) with a1 and ag from Lemma 1 c)

N
Z 1(—oo,t0] (tnN) g1 (YnN) mi (tnN)2
n=—N
N

+ Z ]- (to, oo) gZ(Y ) mZ(tnN)2
n=—N

Moo [ g ) Poldy) mh (to)? ar + / 02(0) Po-e(dy) mi(to)? az

in probability under PN .

Proof
Chebychev inequality and Lemma 1 ¢) provide the assertion. O

Proof of the Theorem
Since f is the density of the error distribution P, the density fy of Py has
the form fy(y) = f(y — 0). The same holds for the densities fyic, fm (tnn)>

fo fo
Justtan) OF Poves Pui(tan)s Pus(tan)- Let be go = ——z and hy = Ti and

denote by pxn the AV-density of PV and by ¢n the AVN-density of Q. For
using LeCam’s third lemma (see e.g. Hajek and Sidak 1967, p. 208) we need
a representation of log %

If the errors have a normal distribution, then we have for ¢,y < to

Fuyern) Wnn)
Leaapoe) — 1 (g = i (tu))? = (v — 6]

= —ﬁ [_2(ynN - 6‘>m1(tn]\1) + ml(tnN)2]

= ge(ynN) ml(tnN) - %%ml(tnl\f)a

log

and analogously for t,n > tg

f’mg(t,,LN) (ynN)

log Torelynn) 9o+c(Ynn) m2(tnn) — %%mQ (t”N)2'

If the errors have not a normal distribution, then Taylor expansion,
Lemma 1 a) and Assumption C) provide for ¢,n < to

Sintan) Ynn)  fynn — 1 (tan)) — fo(ynn — ma(tan))

fO(ynN) B fG(ynN) - fa(ynN)
oy Bal) LS ) e
= ) ") G gy T )

1 f///(ynN+mnN) m (t )3

6 foyan) Py

= 1t o) (o) + 3 Bown) ma () + O (N-2)).
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Set p(y) = log(1+y) —y+ 3y Then p is strictly increasing for y > —1 and
lim,_ 2 ;y) = 0. Assumption C) and Lemma 1 a) imply that there exists a

2
constant My with

*{rmtr micr o)

MO 7MO N—oco
SN‘WH”(m) ’f’<m>\} — 0
This implies
fm(tm(ynN))
1 RPN 2
Og( Fo(ynn)

1
= go(yn) M1 (tn) + 5 ho(ynr) ma (ba)? + O (N73/2)

1
_5 99(ynN)2 my (tnN)2 +0 (N_B/Q)

+p (ge(ynN) mi(thn) + % ho(ynn) mi(tan)? + O (N—3/2>)

1 1
= go(Ynn) M1 (tan) + 3 ho(Ynn) mi (tan)® — B 90(ynn)? mi(tan)?

+0 (N—S/Z) +o(N7Y).

An analoguous expression holds for t,,5 > tg where go and hy are replaced
by go+c and hg.. Since [ ff(gjy))P(dy) = [ f"(y)dy = 0, Lemma 2 implies

N

Z (1(_00,150] (tnN) h9 (YnN) my (tnN)2
n=—N

+ ]-(to,oo) (tnN) h0+c(YnN) mao (tnN)2)
252 [ ho(y) Po(dy) mi (to)? ar + /he+c(y)Pe+c(dy) my(to)® az =0

in probability under PV. Thus we have

1 qn(Yn)
og
pn(Yn)
N
= Z (1(—<>o,to](tnN) 96(Ynn) mi(tyn)
n=—N
+ 1(t0700)(tnN) 99+C(YnN) mo (tnN)
1
D) L(—o0,t0] (tnn) gG(YnN)2 ml(tnN)2
1

= 5 Lo (tu) (Vi (v

+ O(N7Y2) 4 0pn (N?).
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This representation of log Zz gx % holds also for normally distributed errors

since, according to Lemma 2,

N

1 1
Z (1(—00,750] (tnN) ? ml(tnN)2 + l(to,oo)(tnN) ; ma (tnN)2>

n=—N
behaves in probability like

N

Z (L(—o0,to] (tnn) 90(Yen)? ma (tnn)?
n=—N

+ L(tg,00) (tnv) gose(Yon ) ma(tnn)?) .

Let a and b be arbitrary real numbers and set

Y(y)
V2N +1

+ b (L(—oo,t0) (tnn) g6(y) M (tnn) + Litg,00) (Enn) Go4e(y) ma(tan)) -

Wan(y) :i=a

We are now going to derive the asymptotic distribution of Wy :=
25_7 N Wan(Yan) under PN by checking Lindeberg’s condition. Since

J9e)Po(dy) = — [ fo(v) = 0 = [go+c(y)Posc(dy) and
J ¥(y) Po,o(dy) =0, the expectatlon of Wy satisfies

—N+Nq,—1

Bl =] 3 o [ R+ b [ aot)Potan) s t)

¥ Z o [ v Pl

—N+N,

+b / Go+c(y) Poe(dy) ma(tnn )‘

= Ja |‘\/7/¢ )Py(dy) + %/w Pe+c(dy)’
< 1alvaNFT (| | | [opian)
e -] | [ o Phcdan)
o [ otrtan) + 1= ) [ o) Paccta)
< VAN (s | [ vmtan| + o5t | [ owPectan)
+L/MwﬂmeD
Nzoe .
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By using Lemma 1 b) and c), we obtain for the variance S%p of
N
anfN 1(700,150] (tnN) WnN (YnN)

—N+N,—1

sh= 3 [ Wo0) = EWor (Vu))? Pala)

—N+N,— 2
-y ( 2L 4 gu(g)maltn)) Pola)

n=—N

—N+N,—1

= a2 2N+1 /wg dP9+b2 /99 dPy Z ml(tnN)2

n=—N
—N+Ny—1

1
LS )
V2N +1 iy

N=go 2 a/wg dPy + b? /gg dPy m' (to)? ay

+26Lb/1/}9 gdo dPg

+ 2ab/z/)9 9o APy m/; (to) (—a?).

An analoguous expression holds for the variance S3y of
>N ~ Lito,00) (tnn) Won(Yyn) so that the variance S% := Siy + Say

n=-—

of Zg:_N Won (Yan) converges to s? := a?0? + b%03 + 2aboyo, where
o? = a/ng dPy+ (1 —a)/w§+c dPy.,
0'% = /gg dPy mll(to)2 ay + /ggJrC dPngc mé(to)Q ag,

o12 1= /we 9o APy mi (to) (—a?) + /¢9+cgo+c dPpc mi(to) (1 — ).

Moreover, according to Lemma 1 a), there exists a constant My such that
with Lemma 1 b) and c)

—N+Nq,—1

3 s, W) B0V () Pla)

N,
< a? &

= Vg dPy
2N +1 lavp (y)|+]bge (y) Mo|>eSn VN

~N+N,—1

+ b? / g3 dPy Z mi(tan)?
lat(y)|+[bgo (y) Mo|>eSn VN —

—N+Ny—1

1
2ab/ 1/%) 99 ml(tnN)
|ath ()] +1bga (y) Mo|>eSn VN o e nz

N —o0
—

0.
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The same holds for the sum over ¢, > tg. Hence Lindeberg’s condition is
satisfied so that the asymptotic distribution of Wy under PV is a normal
distribution with expectation 0 and variance s2. Then, using the represen-
tation (1) of the estimators and the convergence of

N

Z (L(—co,t0) (tnn) g0 (Yo )? mi(tnn)?
n=—N

+ 1(t0,00) (tnN) 99+C(YnN)2 ma2 (tnN)Q)

towards o2 according to Lemma 2, the asymptotic distribution under PV
of

a V2N +1 (éN(YN) - é(PO,a)) +0b logm

is a normal distribution with expectation —b 505 and variance s?. The
Cramer-Wold device (see e.g. Serfling 1980, p. 18) and LeCam’s third lemma

(see e.g. Hajek and Siddk 1967, p. 208) provide the asymptotic distribution
of V2N +1 (éN(YN) — GA(PQ,Q)) under @V and thus the assertion of the
theorem. O

References

1. T. Bednarski and B.R. Clarke. Trimmed likelihood estimation of location and
scale of the normal distribution. Austral. J. Statist. 35, (1993) 141-153.

2. C.K. Chu, LK. Glad, F. Godtliebsen, J.S. Marron. Edge-preserving smoothers
for image processing. J. Amer. Statist. Assoc. 93, (1998) 526-541.

3. B.R. Clarke. Uniqueness and Fréchet differentiability of functional solutions to
maximum likelihood type equations. Ann. Statist. 11, (1983) 1196-1205.

4. R.L. Eubank. Spline Smoothing and Nonparametric Regression. Dekker, New
York, 1988.

5. W. Hardle and T. Gasser. Robust nonparametric function fitting. J. Roy.
Statist. Soc. Ser. B 46, (1984) 42-51.

6. J. Hajek and Z. Siddk. Theory of Rank Tests. Academic Press, New York, 1967.

7. P.J. Huber. Finite sample breakdown of M- and P-estimators. Ann. Statist.
12, (1984) 119-126.

8. I. Koch. On the asymptotic performance of median smoothers in image analysis
and nonparametric regression. Ann. Statist. 24, (1996) 1648-1666.

9. I. Mizera and C.H. Miiller. Breakdown points and variation exponents of robust
M-estimators in linear models. Ann. Statist. 27, (1999) 1164-1177.

10. C.H. Miiller. On the use of high breakdown point estimators in the image
analysis. Tatra Mountains Math. Publ. 17, (1999) 283-293.

11. P.J. Rousseeuw and A.M. Leroy. Robust Regression and Qutlier Detection.
John Wiley, New York, 1987.

12. R.J. Serfling. Approzimation Theorems of Mathematical Statistics. John Wi-
ley, New York, 1980.



