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Abstract

We investigate depth notions for general models which are derived via the like-
lihood principle. We show that the so-called likelihood depth for regression in
generalized linear models coincides with the regression depth of Rousseeuw and
Hubert (1999) if the dependent observations are appropriately transformed. For
deriving tests, the likelihood depth is extended to simplicial likelihood depth. The
simplicial likelihood depth is always a U-statistic which is in some cases not de-
generated. Since the U-statistic is degenerated in the most cases, we demonstrate
that nevertheless the asymptotic distribution of the simplicial likelihood depth and
thus asymptotic α-level tests for general types of hypotheses can be derived. The
tests are distribution-free. We work out the method for linear regression with and
without intercept and for quadratic regression.
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1 Introduction

For generalizing the median to multivariate data sets, maximum depth estimators based
on different depth notions have been introduced. Different depth notions are, for example,
the half space depth of Tukey (1975) and the simplicial depth of Liu (1988, 1990). For
other depth notions see the book of Mosler (2002) and the references in it. Multivariate
depth concepts were transferred to regression by Rousseeuw and Hubert (1999), to logistic
regression by Christmann and Rousseeuw (2001) and to the Michaelis-Menten model by
Van Aelst et al. (2002).

Since many depth concepts exist, there are attempts to provide a general theory for
them. Zuo and Serfling (2000a) proposed properties which are desirable for depth notions.
In Zuo and Serfling (2000b), it is shown that these desirable properties ensure well be-
haved contours and almost sure convergence. While Zuo and Serfling provided a general
theory via some properties, Mizera (2002) introduced a general definition of depth by
using general objective (criterial) functions and constructed a differential approach for it.
Especially, the half space depth of Tukey (1975) and the regression depth of Rousseeuw
and Hubert (1999) are special cases of the general definition. Although the approach of
Mizera (2002) holds for general objective functions, the objective functions, given in that
paper by examples, all base on residuals, i.e. on yn − θ or yn − x>n θ. But they also can be
based on likelihood functions as Mizera and Müller (2003) pointed out. They worked out
this possibility for simultaneous estimation of location and scale leading to location-scale
depth.

In this paper in Section 2, the approach of likelihood depth, where the objective func-
tion and thus the depth notion is based on the likelihood function, is studied for a broader
class of applications. Likelihood depth is worked out for regression in generalized linear
models as logistic regression and regression with Poisson distribution, geometric distri-
bution and exponential distribution. It is shown that in all cases the depth notion is
equivalent to the regression depth of Rousseeuw and Hubert (1999) if the dependent ob-
servations are transformed appropriately. This means that the depth in these generalized
linear models has the same robustness properties as the regression depth of Rousseeuw
and Hubert (1999) and can be calculated like this.

In Section 2 it is also shown that the half space depth of Tukey (1975) is a likelihood
depth. Since the simplicial depth of Liu (1988, 1990) is an extension of the half space
depth we also define simplicial likelihood depth as extension of the likelihood depth in this
section. We are aware of the fact that simplicial depth and thus also simplicial likelihood
depth possesses not all of the desirable properties proposed by Zuo and Serfling (2000a).
But simplicial depth and thus simplicial likelihood depth has the strong advantage that
the depth function is a U-statistic. For U-statistics, the asymptotic distribution can be
derived rather easily. Unfortunately, the simplicial depth for multivariate location is a
degenerated U-statistic as Liu (1990) pointed out. Hence the asymptotic distribution is
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not that easy to derive.

Arcones et al. (1994) derived the asymptotic normality of the maximum simplicial
depth estimator via the convergence of the whole U-process. The convergence of the U-
process was also shown by Dümbgen (1992). However the asymptotic normal distribution
has a covariance matrix which depends on the underlying distribution. Hence this result
cannot be used to derive distribution-free tests, a hope which is related to the introduction
of depth notions since the depth generalizes the rank of a one-dimensional observation.
Therefore Liu (1992), Liu and Singh (1993) proposed a different approach for deriving
distribution-free multivariate rank tests based on depth notions. It generalizes Wilcoxon’s
rank sum test for two samples. While the asymptotic normality is derived for several
depth notions for distributions on IR1, it is shown only for the Mahalanobis depth for
distributions on IRk, k > 1. Hence it is unclear how to generalize the approach of Liu and
Singh to other situations as regression. Tests for regression based on depth notions are
derived only by Van Aelst et al. (2002). They even derived an exact test based on the
regression depth but did it only for linear regression.

In this paper in Section 3 we derive simple distribution-free tests for regression based on
the simplicial likelihood depth. These tests can test all hypothesis of the form H0 : θ ∈ Θ0

where Θ0 is a subset of the parameter space and are not restricted to regression problems.
It is a general approach and the only thing what has to be done is to find the asymptotic
distribution of the simplicial likelihood depth by using known results on the asymptotic
behavior of U-statistics. We demonstrate this for some regression problems. In particular
we show that in some cases as regression with exponential distributed errors, which is
relevant for reliability theory, the simplicial likelihood depth is not a degenerated U-
statistic so that its asymptotic normality follows directly from the Theorem of Hoeffding.
Hence there is the hope that in other cases, the simplicial likelihood depth is not a
degenerated U-statistic as well.

However, in the most regression problems, the simplicial likelihood depth is a degen-
erated U-statistic as Liu’s simplicial depth. But we demonstrate that this can be treated
as well. In these cases the asymptotic distribution is given by the asymptotic distri-
bution of the second term of the Hoeffding decomposition which can be found by the
spectral decomposition of the reduced normalized kernel function. For some cases like
linear regression through the origin, the spectral decomposition is easy to find.

For other cases like polynomial regression of higher order, this is not so easy but can be
done as well. In Section 4 it is shown how this can be done by solving differential equations.
For that we derive at first a general formula of the reduced normalized kernel function
for general polynomial regression. Then we demonstrate how the spectral decomposition
can be found for two cases, namely linear regression with constant term and quadratic
regression with constant term. Although the results are derived only for special regression
problems we believe that the method can be applied also for other problems.
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Section 5 contains a short conclusion and some open problems. The proofs are given
in Section 6.

2 Likelihood depth and simplicial likelihood depth

If the variable Zn, n = 1, . . . , N , has a discrete or continuous density function fθ(zn), then
let L(θ, zn) = fθ(zn) denote the likelihood function at the parameter θ and the observation
zn. We assume that Z1, . . . , ZN are independent and identically distributed throughout
the paper. The following definition generalizes the concept of the nonfit of Rousseeuw
and Hubert (1999).

Definition 1 (Likelihood nonfit) θ ∈ IRq is a likelihood nonfit within z1, . . . , zN if
there is a θ′ 6= θ with

L(θ′, zn) > L(θ, zn) for all n = 1, . . . , N.

A likelihood nonfit θ is also called not weakly optimal (Mizera 2002) and was extended
as above also in Mizera and Müller (2003). Having the definition of a nonfit the depth of
a parameter θ can be defined as in Rousseeuw and Hubert (1999) and Mizera (2002).

Definition 2 (Global likelihood depth) The global likelihood depth of θ within z1, . . . ,
zN is the minimal number m of observations zi1 , . . . , zim so that θ is a likelihood nonfit
within {z1, . . . , zN} \ {zi1 , . . . , zim}.

Assuming differentiability of the logarithm of the likelihood function hn(θ) = logL(θ, zn),
a sufficient condition for a likelihood nonfit is

u>h′n(θ) > 0 for all n = 1, . . . , N,

for some direction u ∈ IRq, where h′n(θ) is the vector of partial first order derivatives at θ.
This sufficient condition leads as in Mizera (2002) to tangent likelihood depth, a notion
of depth which is more operational (see also Mizera and Müller 2003).

Definition 3 (Tangent likelihood depth) The tangent likelihood depth dT (θ, z) of θ
within z = (z1, . . . , zN ) is defined as

dT (θ, z) := inf
u6=0

]{n; u>h′n(θ) ≤ 0}.

Since the tangent likelihood depth is more tractable we will work only with this and
denote it shortly likelihood depth.
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Definition 4 (Likelihood depth estimator) θ̂(z) is called a likelihood depth estimator
at z if

θ̂(z) ∈ arg max
θ
dT (θ, z).

Instead of defining the global likelihood depth via the definition of likelihood nonfit,
we could define it via a definition of admissibility. A parameter θ ∈ IRq would be called
admissible if there is no θ′ 6= θ with

L(θ′, zn) ≥ L(θ, zn) for all n = 1, . . . , N,

L(θ′, zn) > L(θ, zn) for at least one n = 1, . . . , N.

Then an alternative definition of the global likelihood depth of θ will be the minimal
number m of observations zi1 , . . . , zim so that θ is not admissible within {z1, . . . , zN} \
{zi1 , . . . , zim}. However, the definition of the tangent likelihood depth would become more
complicated, namely like that

N − sup
u6=0

{]E; E ⊂ {1, . . . , N}, u>h′n(θ) ≥ 0 for all n ∈ E (1)

and u>h′n(θ) > 0 for at least one n ∈ E}.

This is the reason that we prefer the definition via the nonfit although the characterization
of the simplicial likelihood depth for polynomial regression in Example 4 would hold in
more generality if we would use the definition given by (1).

Example 1 (Multivariate location with elliptical unimodal distribution)
Let fµ : IRq → IR be a continuous density satisfying fµ(zn) = f0(zn − µ) so that µ ∈ IRq

is a q-dimensional location parameter. If there exists a strictly decreasing function g0 :
[0,∞) :→ [0,∞) and positive definite matrix Σ with f0(v) = g0(v

>Σ−1v) for all v ∈ IRq,
then we have f ′

0(v) = g′0(v
>Σ−1v)2 Σ−1 v with g′0(v

>Σ−1v) < 0. This means that fµ has
an elliptical unimodal density. Examples of these densities are the multivariate normal
distribution and multivariate Cauchy distribution. For such densities we have

h′n(µ) =
−g′0((zn − µ)>Σ−1(zn − µ))

g0((zn − µ)>Σ−1(zn − µ))
2 Σ−1(zn − µ)),

so that the tangent likelihood depth is

dT (µ, z) = inf
u6=0

]{n : u>(zn − µ) ≤ 0} = inf
u6=0

]{n : u>zn ≤ u>µ}.

But this is the half space depth of Tukey (1975) (see also Donoho and Gasko 1992). Hence
Tukey’s half space depth is a likelihood depth for any elliptical unimodal distribution.2

Example 2 (Regression with symmetric and unimodal distribution)
Regard a general linear regression model with observations Zn = (Yn, Tn) where Yn ∈ IR is
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the dependent variable and Tn ∈ IRr the independent (explanatory) variable. A common
assumption is that the conditional distribution of the dependent variable Yn given Tn has
a symmetric and unimodal density of the form fβ|Tn=tn(yn) = f0(yn − x(tn)>β), where
β ∈ IRq is the unknown parameter and x : IRr → IRq is a known regression function. As
in Example 1 the symmetry and unimodality of fβ|Tn=tn means that f0(v) = g0(v

2) for all
v ∈ IR, where g0 is a strictly decreasing function. Hence we have

h′n(β) =
−g′0((yn − x(tn)>β)2)

g0((yn − x(tn)>β)2)
2
(
yn − x(tn)>β

)
x(tn),

where g′0(z) < 0, so that the tangent likelihood depth is

dT (β, z) = inf
u6=0

]{n :
(
yn − x(tn)>β

)
u>x(tn) ≤ 0}.

This is the regression depth introduced by Rousseeuw and Hubert (1999). Hence this
depth concept is a likelihood depth for any symmetric and unimodal distribution. Note
that the depth notion proposed in Van Aelst et al. (2002) for polynomial regression, i.e.
x(tn) = (1, tn, t

2
n, . . . , t

q−1
n )>, is not a likelihood depth. 2

In a generalized linear model, we have independent explanatory variables Tn and ob-
servations Yn which depend on Tn. Usually it is assumed that the conditional distribution
of Yn given Tn = tn is a member of the one-parameter exponential family, i.e. its density
is given by

fβ|Tn=tn(yn) =
h(yn)

c(x(tn)>β)
exp

(
H(yn) q

(
x(tn)>β

))
,

where h,H, c, q : IR → IR and x : IRr → IRq are known functions and β ∈ IRq is the
unknown parameter. Because of

h′n(β) =

(−c′(x(tn)>β)

c(x(tn)>β)
+H(yn) q′

(
x(tn)>β

))
x(tn),

the tangent likelihood depth is given by

dT (β, z) = inf
u6=0

]{n :

(
H(yn) q′

(
x(tn)>β

)
− c′(x(tn)>β)

c(x(tn)>β)

)
u>x(tn) ≤ 0}. (2)

Under special assumptions on q and c we have the following characterization of this
likelihood depth for generalized linear models.

Theorem 1 If q′(v) > 0 for all v ∈ IR and b given by b(v) = c′(v)
c(v) q′(v)

is strictly decreasing

or strictly increasing so that b−1 exists, then the tangent likelihood depth for a generalized
linear model is given by

dT (β, z) = inf
u6=0

]{n :
(
b−1(H(yn)) − x(tn)>β

)
u>x(tn) ≤ 0}, (3)

i.e. the tangent likelihood depth is the regression depth of Rousseeuw and Hubert (1999)
for the transformed observations b−1(H(yn)).
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The equivalence of (2) and (3) is obvious from the assumptions of Theorem 1. Note
that this is based on the monotone invariance property of regression depth shown by
Proposition 2 of Van Aelst et al. (2002). But, if the assumptions of Theorem 1 are not
satisfied, then the likelihood depth for a generalized linear model can lead to a new depth
notion which cannot be interpreted as the regression depth of Rousseeuw and Hubert
(1999). However, the most well known generalized linear models satisfy the assumptions
of Theorem 1:

Example 3 (Examples of generalized linear models)
For regression with exponential distributed dependent observations Yn, the density of
the conditional distribution of Yn has the form fβ|Tn=tn(yn) = λn exp(−λnyn) with λn =
exp(−x(tn)>β). Then we have H(yn) = yn, q(v) = − exp(−v), h(yn) = 1, c(v) = exp(v)
such that b(v) = exp(v) and b−1(H(yn)) = log(yn). We get the same b(v) and b−1(H(yn))
for a loglinear model, where the dependent observations Yn have a Poisson distribution

with fβ|Tn=tn(yn) = λ
yn
n exp(−λn)

yn!
and λn = exp(x(tn)>β), so that H(yn) = yn, q(v) =

v, h(yn) = 1
yn!

, c(v) = exp(exp(v)). b−1(H(yn)) = log(yn) holds also for observations

with geometrical distribution since fβ|Tn=tn(yn) = pn(1 − pn)yn with pn = 1
1+exp(x(tn)>β)

implies H(yn) = yn, q(v) = log
(

exp(v)
1+exp(v)

)
, h(yn) = 1, c(v) = 1 + exp(v). However,

for logistic regression, where the dependent observations have a binomial distribution,
the observations have to be transformed differently. In this case we have fβ|Tn=tn(yn) =(

mn

yn

)
pyn

n (1−pn)mn−yn with pn = F (x(tn)>β), where F (v) = exp(v)
1+exp(v)

is the logistic function.

Here we have H(yn) = yn, q(v) = v, h(yn) =
(

mn

yn

)
, c(v) = (1 + exp(v))mn , so that

b(v) = mn F (v) and b−1(H(yn)) = F−1
(

yn

mn

)
. In the special case of Bernoulli distribution,

i.e. yn ∈ {0, 1} and mn = 1, the resulting likelihood depth coincides with the overlap
measure of Christmann and Rousseeuw (2001). 2

In all examples for generalized linear models, it turned out that the likelihood depth
coincides with the regression depth of Rousseeuw and Hubert (1999) if the dependent
observations are appropriately transformed. This means that the likelihood depth for
these generalized linear models has the same robustness properties as shown by Rousseeuw
and Hubert (1999) and Van Aelst and Rousseeuw (2000) for regression depth. In particular
the likelihood depth estimator has a breakdown point of 1

3
for multiple regression, i.e. for

x(tn) = (1, tn)> with tn ∈ IRr. Moreover, likelihood depth and the likelihood depth
estimator can be calculated by the methods proposed by Rousseeuw and Hubert (1999),
Rousseeuw and Struyf (1998), Van Aelst et al. (2002).

The calculation of the likelihood depth is in particular easy for q + 1 observations.
Counting all subsets with q + 1 observations which has a likelihood depth greater than
zero leads to the simplicial likelihood depth.
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Definition 5 (Simplicial likelihood depth) If dT is a tangent likelihood depth for θ ∈
IRq, then the simplicial likelihood depth dS(θ, z) of θ within z = (z1, . . . , zN) is defined as

dS(θ, z) :=

(
N

q + 1

)−1

]
{
{n1, . . . , nq+1} ⊂ {1, . . . , N}; dT

(
θ, (zn1

, . . . , znq+1
)
)
> 0
}

=

(
N

q + 1

)−1 ∑

n1, . . . , nq+1

pairwise different

1
{
dT (θ, (zn1

, . . . , znq+1
)) > 0

}
,

where 1 {dT (θ, (z1, . . . , zq+1)) > 0} denotes the indicator function

1{dT (θ,(z1,...,zq+1))>0}((z1, . . . , zq+1)).

The name of this depth criterion is motivated by the example for multivariate location.
In Example 1 it was shown that the tangent likelihood depth for multivariate location
µ ∈ IRq with elliptical and unimodal distribution is Tukey’s half space depth. This half
space depth satisfies dT

(
µ, (zn1

, . . . , znq+1
)
)
> 0 if and only if µ lies in the simplex spanned

by zn1
, . . . , znq+1

. Hence the simplicial likelihood depth is counting the simplices which
contain µ. But this is the simplicial depth introduced by Liu (1988, 1990).

Example 4 (Regression)
The Examples 2 and 3 have shown that the tangent likelihood depths for the most common
regression models coincide with the regression depth of Rousseeuw and Hubert (1999) after
an appropriate transformation of the dependent observations. W.l.o.g. let be y1, . . . , yN

the appropriately transformed observations. Then the simplicial likelihood depth is count-
ing all subsets zn1

, . . . , znq+1
with infu6=0 ]{i : (yni

− x(tni
)>β) u>x(tni

) ≤ 0} > 0. For
polynomial regression with x(tn) = (1, tn, t

2
n, . . . , t

q−1
n )> and tn1

< tn2
< . . . < tnq+1

, we
have infu6=0 ]{i : (yni

− x(tni
)>β) u>x(tni

) ≤ 0} > 0 if

(yni
− x(tni

)>β) (−1)i ≥ 0 for all i = n1, . . . , nq+1

or

(yni
− x(tni

)>β) (−1)i ≤ 0 for all i = n1, . . . , nq+1,

i.e. the residuals have alternating signs. This condition is also necessary with probability
one if Yn has a continuous distribution since in this case Yn−x(tn)>β 6= 0 with probability
one. If we generally assume that t1 < t2 < . . . < tN , then the simplicial likelihood depth
for polynomial regression with continuous Yn is given with probability one by

dS(β, z) =

(
N

q + 1

)−1 ∑

n1<n2<...<nq+1

(
q+1∏

i=1

1
{
(yni

− x(tni
)>β) (−1)i ≥ 0

}
(4)

+

q+1∏

i=1

1
{
(yni

− x(tni
)>β) (−1)i ≤ 0

}
)
,
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where 1
{
(yn − x(tn)>β) (−1)i ≥ 0

}
is an abbreviation for the indicator function

1{(yn−x(tn)>β) (−1)i≥0}((yn, tn)). For linear regression this notion of simplicial depth for

regression were derived in Rousseeuw and Hubert (1999) via the dual approach. Here we
get the property (4) only with probability one for continuous Yn. But if we would define
the tangent likelihood depth via admissibility, i.e. by (1), the characterization (4) would
hold always and for any distribution of Yn. Note that if we would base the simplicial
depth on the depth notion proposed by Van Aelst et al. (2002) for polynomial regression,
we would not get the depth function (4). 2

3 Tests based on the simplicial likelihood depth

For very small sample sizes, the distribution of the simplicial likelihood depth dS(θ, Z)
under θ can be calculated by combinatorial methods. However, for large data sets, ap-
proximations of the distribution are necessary. For that note that the tangent likelihood
depth is a symmetric kernel, i.e. it satisfies dT (θ, (z1, . . . , zN)) = dT (θ, (zπ(1), . . . , zπ(N)))
for all permutations π : {1, . . . , N} → {1, . . . , N}. Hence the simplicial likelihood depth
is a U-statistic with symmetric kernel function

ψθ(z1, . . . , zq+1) = 1 {dT (θ, (z1, . . . , zq+1)) > 0)} .

The asymptotic distribution of U-statistics is well known. In particular if the U-statistic
is not degenerated, i.e. ψ1

θ(z1) := E(ψθ(Z1, . . . , Zq+1)|Z1 = z1) is not independent of z1,
then we have with the Theorem of Hoeffding (see e.g. Lee 1990, p. 76, or Witting and
Müller-Funk 1995, p. 635)

L(
√
N(dS(θ, (Z1, . . . , ZN )) − γθ))

L−→ N (0, (q + 1)2 σ2
θ)

with γθ = E(ψθ(Z1, . . . , Zq+1)) and σ2
θ = Var(ψ1

θ(Z1)). Hence a test for testingH0 : θ ∈ Θ0

against H0 : θ |∈ Θ0, where Θ0 is a subset of the parameter space, can be based on the
test statistic T (z1, . . . , zN) := supθ∈Θ0

Tθ(z1, . . . , zN) where

Tθ(z1, . . . , zN ) :=

√
N(dS(θ, (z1, . . . , zN)) − γθ)

(q + 1) σθ

. (5)

If the null hypothesis H0 is rejected if T (z1, . . . , zN ) is less than the α-quantile of the
standard normal distribution then this test is asymptotically an α-level test since for any
c ∈ IR and all θ ∈ Θ0

Pθ0

(
sup
θ∈Θ0

Tθ(z1, . . . , zN ) < c

)
≤ Pθ0

(Tθ0
(z1, . . . , zN ) < c) .

We will see later that usually the quantities γθ and σθ are independent of θ so that the test
has a very simple form. The main difficulty is the calculation of supθ∈Θ0

dS(θ, (z1, . . . , zN )).
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This difficulty disappear for tests of H0 : θ = θ0 against H0 : θ 6= θ0 where θ0 is a given
parameter. These tests also can be used to create confidence regions by defining the
confidence regions as the set of all parameters θ0 for which H0 : θ = θ0 is not rejected.

Unfortunately, the simplicial likelihood depth is a degenerated U-statistic in many
cases. This is not only the case for Liu’s (1988, 1990) simplicial depth for multivariate
location. For polynomial regression (see Example 4) it depends whether P (Yn−x(Tn)>β ≥
0|Tn) is equal 1

2
or not. To see this let

Pq+1 := {π : {1, . . . , q + 1} → {1, . . . , q + 1}; π(i) 6= π(j) for i 6= j}
the set of all permutations of {1, . . . , q + 1}. Then the simplicial likelihood depth for
polynomial regression can be written as (compare with Example 4)

dS(β, z) =

(
N

q + 1

)−1 ∑

n1, . . . , nq+1

pairwise different

ψβ(zn1
, . . . , znq+1

)

where

ψβ(z1, . . . , zq+1) =
∑

π∈Pq+1

(
q∏

i=1

1
{
tπ(i) < tπ(i+1)

}
)

(6)

·
(

q+1∏

i=1

1
{
(yπ(i) − x(tπ(i))

>β) (−1)i ≥ 0
}

+

q+1∏

i=1

1
{
(yπ(i) − x(tπ(i))

>β) (−1)i ≤ 0
}
)
.

Then ψβ is a symmetric kernel function.

Proposition 1 Let be p = P (Yn − x(Tn)>β ≥ 0|Tn) with probability 1 and Tn has an
absolute continuous distribution.
a) If q + 1 is even, then with probability 1

E (ψβ((Z1, . . . , Zq+1)|Z1 = (y1, t1)))

= p
q+1

2
−1 (1 − p)

q+1

2
−1 ·

(
(1 − p) 1{y1 − x(t1)

>β ≥ 0} + p 1{y1 − x(t1)
>β ≤ 0}

)
.

b) If q + 1 is odd, then with probability 1

E (ψβ((Z1, . . . , Zq+1)|Z1 = (y1, t1)))

= p
q

2
−1 (1 − p)

q

2
−1 q! ·


p (1 − p)

q

2∑

m=0

P (T1 < T2 < . . . < Tq+1|T2m+1 = t1)

+
(
(1 − p)2 1{y1 − x(t1)

>β ≥ 0} + p2 1{y1 − x(t1)
>β ≤ 0}

)

·
q

2∑

m=1

P (T1 < T2 < . . . < Tq+1|T2m = t1)


 .

c) If p = 1
2
, then E(ψβ((Z1, . . . , Zq+1)|Z1 = (y1, t1))) =

(
1
2

)q
with probability 1.
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Proposition 1 shows that the simplicial likelihood depth for polynomial regression is a
degenerated U-statistic if the conditional probability of nonnegative residuals given Tn is
exactly 1

2
. This is the case if the median of the conditional residual distribution is zero,

a case which is often satisfied. However, models exist as well where the median of the
residual distribution is not zero. This is for example the case for exponential distributed
dependent observations as the following example shows.

Example 5 (Regression with exponential distribution)
As in the first example of Example 3 we regard a regression experiment where the depen-
dent variables Yn possesses an exponential distribution. Replacing the dependent observa-
tions by the logarithm of their values and using the parametrization λn = exp(−x(tn)>β)
the simplicial likelihood depth for polynomial regression is given by (4). In particular it
is a U-statistic with kernel function

ψβ(z1, . . . , zq+1) =
∑

π∈Pq+1

(
q∏

i=1

1
{
tπ(i) < tπ(i+1)

}
)

·
(

q+1∏

i=1

1
{
(log(yπ(i)) − x(tπ(i))

>β) (−1)i ≥ 0
}

+

q+1∏

i=1

1
{
(log(yπ(i)) − x(tπ(i))

>β) (−1)i ≤ 0
}
)
.

Hence the quantity p of Proposition 1 is

p = P (log(Yn) − x(Tn)>β ≥ 0|Tn = tn) = P (Yn − exp(x(Tn)>β) ≥ 0|Tn = tn)

= Pλn

(
Yn ≥ 1

λn

)
=

1

e
6= 1

2
,

so that the simplicial likelihood depth is a nondegenerated U-statistic. For deriving the
test statistic (5), we have only to calculate γβ and σβ.

The calculation of γβ and σβ is demonstrated here for simple linear regression, i.e. for
x(tn) = (1, tn)> and q + 1 = 3. Again we assume that G is a differentiable distribution
function of the explanatory variables. At first note that Lemma 3 provides

P (T1 < T2 < T3|T1 = t1) + P (T1 < T2 < T3|T3 = t1)

=
1

2
−G(t1) +

1

2
G(t1)

2 +
1

2
G(t1)

2 =
1

2
−G(t1) +G(t1)

2,

and

P (T1 < T2 < T3|T2 = t1) = G(t1) −G(t1)
2.

11



Then we have

ψ1
β((y1, t1))

= 2

(
1 − 1

e

)
1

e

(
1

2
−G(t1) +G(t1)

2

)

+ 2

((
1 − 1

e

)2

1{log(y1) − x(t1)
>β ≥ 0} +

(
1

e

)2

1{log(y1) − x(t1)
>β ≤ 0}

)

·
(
G(t1) −G(t1)

2
)
.

Using
∫ b

a
G(x)k g(x) dx = 1

k+1

(
G(b)k+1 −G(a)k+1

)
for g = G′, we obtain

γβ = E(ψ1
β((Y1, T1)))

=

(
1 − 1

e

)
1

e

2

3
+ 2

(
1 − 1

e

)
1

e

(
1

2
− 1

3

)
=

(
1 − 1

e

)
1

e
= 0.2325,

E
(
ψ1

β((Y1, T1))
2
)

= E

(
4

(
1 − 1

e

)2 (
1

e

)2 (
1

4
−G(T1) + 2G(T1)

2 − 2G(T1)
3 +G(T1)

4

))

+ E

(
4

((
1 − 1

e

)4

1{log(y1) − x(t1)
>β ≥ 0} +

(
1

e

)4

1{log(y1) − x(t1)
>β ≤ 0}

)

·
(
G(T1)

2 − 2G(T1)
3 +G(T1)

4
))

+ E

(
8

(
1 − 1

e

)
1

e

·
((

1 − 1

e

)2

1{log(y1) − x(t1)
>β ≥ 0} +

(
1

e

)2

1{log(y1) − x(t1)
>β ≤ 0}

)

·
(

1

2
G(T1) −

3

2
G(T1)

2 + 2G(T1)
3 −G(T1)

4

))

= 4

(
1 − 1

e

)2 (
1

e

)2 (
1

4
− 1

2
+

2

3
− 1

2
+

1

5

)

+ 4

(
1 − 1

e

)
1

e

((
1 − 1

e

)3

+

(
1

e

)3
) (

1

3
− 1

2
+

1

5

)

+ 8

(
1 − 1

e

)2 (
1

e

)2 (
1

4
− 1

2
+

1

2
− 1

5

)

=

(
1 − 1

e

)2 (
1

e

)2 (
7

15
+

6

15

)
+

(
1 − 1

e

)
1

e

((
1 − 1

e

)3

+

(
1

e

)3
)

2

15
,
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σ2
β = Var

(
ψ1

β((Y1, T1))
)

=

(
1 − 1

e

)2 (
1

e

)2
(−2)

15
+

(
1 − 1

e

)
1

e

((
1 − 1

e

)3

+

(
1

e

)3
)

2

15
= 0.0022.

Hence the test statistic √
N(dS(β0, (Z1, . . . , ZN)) − 0.2325)

0.1396

has approximately a standard normal distribution and can be used for testing hypotheses
over β for exponential distributed dependent observations, which in particular appear
in reliability theory. Note that these tests do not depend on the distribution of the
explanatory variables if Tn has a continuous distribution. Moreover these tests can be
used not only for exponential distributed Yn but also for all continuous distributions which
satisfy P (log(Yn) − x(Tn)>β ≥ 0|Tn = tn) = 1

e
for almost all tn. 2

As soon as P (Yn−x(Tn)>β ≥ 0|Tn) = 1
2

holds, and this is the case in the most regression
setups, then the simplicial likelihood depth is degenerated. But asymptotic distributions
can be also derived for degenerated U-statistics by using the second component of the
Hoeffding decomposition. We have namely the following result (see e.g. Lee 1990, p. 79,
80, 90, Witting and Müller-Funk, p. 650). If the reduced normalized kernel function

ψ2
θ(z1, z2) := E(ψθ(Z1, . . . , Zq+1) − γθ|Z1 = z1, Z2 = z2)

is IL2-integrable, then it has a spectral decomposition of the form

ψ2
θ(z1, z2) =

∞∑

l=1

λlϕl(z1)ϕl(z2),

where the functions ϕl are IL2-integrable, normalized, and orthogonal. Then the asymp-
totic distribution of the simplicial likelihood depth is given by

L(N(dS(θ, (Z1, . . . , ZN )) − γθ))
L−→ Q

((
q + 1

2

)
λl; l ∈ IN

)
, (7)

where Q(λ0
l ; l ∈ IN) is the distribution of the random variable

∑∞
l=1 λ

0
l (X

2
l − 1) with

Xl ∼ N (0, 1). In the general case, it could happen that the eigenvalues λl depend
on the underlying parameter θ. But in the examples studied below this is not the
case. Also γθ is independent of θ there. Having a asymptotic distribution which is
independent of θ, tests for H0 : θ ∈ Θ0 against H1 : θ |∈ Θ0 can be constructed as in the
nondegenerate case as explained above. In particular the test statistic can be based on

sup
θ∈Θ0

N(dS(θ, (z1, . . . , zN)) − γθ). (8)

In some cases it is simple to find the spectral decomposition of ψ2
θ(z1, z2). This is for

example the case for simple linear regression through the origin as the example below
shows. In other cases as for general polynomial regression, the derivation of the spectral
decomposition needs more steps. This is demonstrated in the next section.

13



Example 6 (Linear regression through the origin)
For linear regression through the origin, the regression function satisfies x(tn) = tn ∈ IR
and the unknown parameter is β ∈ IR, so that the tangent likelihood depth is dT (β, z) =
infu6=0 ]{n : (yn−tnβ) utn ≤ 0}. The tangent likelihood depth of two observations (y1, t1),
(y2, t2) is greater than 0 if and only if (y1 − t1β) t1 and (y2 − t2β) t2 have different signs
or at least one of them is equal to zero. Hence the simplicial likelihood depth is

dS(β, z) =

(
N

2

)−1 ∑

n1 6=n2

ψβ(zn1
, zn2

)

with kernel function

ψβ(z1, z2)

= 1{(y1 − t1β) t1 ≥ 0} 1{(y2 − t2β) t2 ≤ 0}
+ 1{(y1 − t1β) t1 ≤ 0} 1{(y2 − t2β) t2 ≥ 0}.

As for regression with intercept treated in Proposition 1, this is a degenerated U-statistic
for continuous distributions since

ψ1
β(z1) = E(ψβ(Z1, Z2)|Z1 = z1)

= 1{(y1 − t1β) t1 ≥ 0} P ((Y2 − T2β)T2 ≤ 0)

+ 1{(y1 − t1β) t1 ≤ 0} P ((Y2 − T2β)T2 ≥ 0)

= 1{(y1 − t1β) t1 ≥ 0} (P (Y2 − T2 β ≤ 0) P (T2 ≥ 0) + P (Y2 − T2 β ≥ 0) P (T2 ≤ 0))

+ 1{(y1 − t1β) t1 ≤ 0} (P (Y2 − T2 β ≥ 0) P (T2 ≥ 0) + P (Y2 − T2 β ≤ 0) P (T2 ≤ 0))

=
1

2
.

The spectral decomposition of ψ2
β(z1, z2) = ψβ(z1, z2) − 1

2
is

ψβ(z1, z2) −
1

2
= −1

2
ϕ(z1) ϕ(z2)

with

ϕ(z1) = (1{y1 − t1β ≥ 0} − 1{y1 − t1β ≤ 0}) (1{t1 ≥ 0} − 1{t1 ≤ 0}) .

To see this, set r+
i = 1{y1−t1β ≥ 0}, r−i = 1{y1−t1β ≤ 0}, t+i = 1{t1 ≥ 0}, t−i = 1{t1 ≤ 0}

for i = 1, 2 and pr = (r+
1 − r−1 ) (r+

2 − r−2 ), pt = (t+1 − t−1 ) (t+2 − t−2 ). Then we have

pr = 2 r+
1 r

+
2 + 2 r−1 r

−
2 − 1 = 1 − 2 r+

1 r
−
2 − 2 r−1 r

+
2 ,

pt = 2 t+1 t
+
2 + 2 t−1 t

−
2 − 1 = 1 − 2 t+1 t

−
2 − 2 t−1 t

+
2 ,

14



so that

ψβ(z1, z2)

= r+
1 t

+
1 r

−
2 t

+
2 + r+

1 t
+
1 r

+
2 t

−
2 + r−1 t

−
1 r

−
2 t

+
2 + r−1 t

−
1 r

+
2 t

−
2

+ r−1 t
+
1 r

+
2 t

+
2 + r−1 t

+
1 r

−
2 t

−
2 + r+

1 t
−
1 r

+
2 t

+
2 + r+

1 t
−
1 r

−
2 t

−
2

= t+1 t
+
2

(
r+
1 r

−
2 + r−1 r

+
2

)
+ t−1 t

−
2

(
r+
1 r

−
2 + r−1 r

+
2

)

+ t+1 t
−
2

(
r+
1 r

+
2 + r−1 r

−
2

)
+ t−1 t

+
2

(
r+
1 r

+
2 + r−1 r

−
2

)

= t+1 t
+
2

(
1

2
− pr

2

)
+ t−1 t

−
2

(
1

2
− pr

2

)

+ t+1 t
−
2

(
1

2
+
pr

2

)
+ t−1 t

+
2

(
1

2
+
pr

2

)

=

(
1

2
− pr

2

) (
1

2
+
pt

2

)
+

(
1

2
+
pr

2

) (
1

2
− pt

2

)

=
1

2
− pr pt

2
.

Hence the test statistic

N

(
dS(β0, (Z1, . . . , ZN )) − 1

2

)

has approximately a Q
(
−1

2

)
distribution. An α-quantile qQ(− 1

2)
(α) of this distribution

satisfies qQ(− 1

2)
(α) = 1

2
(1 − qχ2(1 − α)), where qχ2(α) is the α-quantile of the central

χ2-distribution. Note that this test is a distribution free tests if (Yn, Tn) has a continuous
distribution with P (Yn − TN ≥ 0|Tn) = 1

2
.2

4 Polynomial regression

Throughout this section, we assume a polynomial regression model with P (Yn−x(Tn)>β ≥
0|Tn) = 1

2
and differentiable distribution function G of the distribution of Tn. In particu-

lar we have x(tn) = (1, tn, t
2
n, . . . , t

q−1
n )> and β ∈ IRq. The kernel function ψβ(z1, . . . , zq+1)

of the simplicial likelihood depth is given by (6). We know from Proposition 1 c) that
γβ = E(ψβ(Z1, . . . , Zq+1)) = E(ψβ(Z1, . . . , Zq+1)|Z1 = z1) =

(
1
2

)q
so that the simplicial

likelihood depth is a degenerated U-statistic. The first step for deriving the asymptotic
distribution of the simplicial likelihood depth is to calculate the reduced normalized kernel-
function ψ2

β(z1, z2) = E(ψβ(Z1, . . . , Zq+1)|Z1 = z1, Z2 = z2)−
(

1
2

)q
. Set rn := yn−x(tn)>β

and

τ(r1, r2) := 1{r1 ≥ 0} 1{r2 ≤ 0} + 1{r1 ≤ 0} 1{r2 ≥ 0}.
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Proposition 2 With probability 1, we have

E(ψβ(Z1, . . . , Zq+1)|Z1 = z1, Z2 = z2) −
(

1

2

)q

=

(
τ(r1, r2) −

1

2

) (
1

2
− |G(t1) −G(t2)|

)q−1

.

We obtain in particular for linear regression (q = 2)

E(ψβ(Z1, Z2, Z3)|Z1 = z1, Z2 = z2) −
1

4
(9)

=

(
τ(r1, r2) −

1

2

) (
1

2
− |G(t1) −G(t2)|

)
,

and for quadratic regression (q = 3)

E(ψβ(Z1, Z2, Z3, Z4)|Z1 = z1, Z2 = z2) −
1

8
(10)

=

(
τ(r1, r2) −

1

2

) (
1

4
− |G(t1) −G(t2)| + (G(t1) −G(t2))

2

)
.

For these two cases we will now demonstrate how the singular value decomposition can
be found. At first it is easy to see (compare also with Example 6) that the spectral
decomposition of

(
τ(r1, r2) − 1

2

)
is

τ(r1, r2) −
1

2
= −1

2
ϕ∗(r1)ϕ∗(r2) (11)

with ϕ∗(r) = 1{r ≤ 0}−1{r ≥ 0}. Hence we need only to find the spectral decomposition
of 1

2
− |G(t1) − G(t2)| and 1

4
− |G(t1) − G(t2)| + (G(t1) − G(t2))

2. But this can be done
by finding the spectral decomposition of 1

2
− |t1 − t2| and 1

4
− |t1 − t2| + (t1 − t2)

2 for the
uniform distribution on [0, 1] since substitution provides

0 =

∫ 1

0

ϕl(t)ϕk(t) dt =

∫ ∞

−∞

ϕl(G(t))ϕk(G(t)) g(t) dt,

1 =

∫ 1

0

ϕl(t)
2 dt =

∫ ∞

−∞

ϕl(G(t))2 g(t) dt,

where g(t) = G′(t). To find the spectral decomposition of 1
2
− |t1 − t2| and 1

4
− |t1 − t2|+

(t1 − t2)
2 we calculate the eigenvalues and the eigenfunctions by setting

λ ϕ(s) =

∫ 1

0

(
1

2
− |t− s|

)
ϕ(t) dt

and

λ ϕ(s) =

∫ 1

0

(
1

4
− |t− s| + (t− s)2

)
ϕ(t) dt,

respectively. Differentiation of these equations leads to differential equations whose solu-
tions provides candidates of the eigenfunctions.
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Lemma 1 The spectral decomposition of 1
2
− |t− s| is given by

1

2
− |t− s| =

∞∑

l=1

λl ϕl(t) ϕl(s),

where

λ2l−1 =
2

π2 (2l − 1)2
, ϕ2l−1(t) =

√
2 cos((2l − 1)π t),

λ2l =
2

π2 (2l − 1)2
, ϕ2l(t) =

√
2 sin((2l − 1)π t)

for l ∈ IN .

Lemma 2 The spectral decomposition of 1
4
− |t− s| + (t− s)2 is given by

1

4
− |t− s| + (t− s)2 =

∞∑

l=0

λl ϕl(t) ϕl(s),

where

λ0 =
1

12
, ϕ0 = 1,

λ2l−1 =
2

π2 (2l)2
, ϕ2l−1(t) =

√
2 cos(2 l π t),

λ2l =
2

π2 (2l)2
, ϕ2l(t) =

√
2 sin(2 l π t)

for l ∈ IN .

Theorem 2 If P (Yn − x(Tn)>β ≥ 0|Tn) = 1
2

and Tn has continuous distribution, then
a) the simplicial likelihood depth dS(β, (Z1, . . . , ZN )) for linear regression satisfies

L
(
N

(
dS(β, (Z1, . . . , ZN)) − 1

4

))
L−→ Q

((
3

2

)
λl; l ∈ IN

)

with λ2l−1 = −1
π2 (2l−1)2

and λ2l = −1
π2 (2l−1)2

for l ∈ IN ,

b) the simplicial likelihood depth dS(β, (Z1, . . . , ZN)) for quadratic regression satisfies

L
(
N

(
dS(β, (Z1, . . . , ZN )) − 1

8

))
L−→ Q

((
4

2

)
λl; l ∈ IN ∪ {0}

)

with λ0 = −1
24

, λ2l−1 = −1
π2 (2l)2

and λ2l = −1
π2 (2l)2

for l ∈ IN .

There are several possibilities to calculate the quantiles of the distributions
Q
((

3
2

)
λl; l ∈ IN

)
and Q

((
4
2

)
λl; l ∈ IN ∪ {0}

)
in Theorem 2 (see e.g. Imhof (1961) or
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α 5% 10% 15% 20% 25% 30% 35%
α-quantile -1.038 -0.930 -0.839 -0.755 -0.674 -0.593 -0.510

99.5% bands ± 0.002 ± 0.002 ± 0.002 ± 0.003 ± 0.003 ± 0.003 0.003

α 40% 45% 50% 55% 60% 65%
α-quantile -0.424 -0.334 -0.239 -0.136 -0.023 0.104

99.5% bands ± 0.003 ± 0.004 ± 0.004 ± 0.004 ± 0.005 ± 0.005

α 70% 75% 80% 85% 90% 95%
α-quantile 0.248 0.416 0.617 0.876 1.233 1.837

99.5% bands ± 0.006 ± 0.006 ± 0.007 ± 0.008 ± 0.010 ± 0.015

Table 1: Means and 99.5% confidence bands of simulated quantiles for quadratic regression

Farebrother (1984)). One more simple possibility is the generation of random num-
bers of the distributions. For example, the quantiles for quadratic regression given
in Table 1 were calculated by generating 10000 random numbers of the distribution
Q
((

4
2

)
λl; l ∈ {0, . . . , 2L}

)
for L = 200. The calculation of the quantiles was repeated

500 times. The means and standard errors (times t(0.9975, 499)/
√

500 where t(α, k) de-
notes the α-quantile of the t-distribution with k degrees of freedom) of these quantiles
are given in Table 1. The same was done for L = 100. However, the results for L = 100
are very similar: The 99.5% confidence bands are even the same, only the means differ
slightly in the last position.
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Figure 1: Hertzsprung-Russell data
with catline and horizontal line through
µ = 5.1
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Figure 2: Depth of horizontal lines
through µ for the Hertzsprung-Russell
data

Example 7 (Hertzsprung-Russell data)
Figure 1 shows the Hertzsprung-Russell data introduced by Rousseeuw and Leroy (1987).
These data concern the temperature and light intensities of 46 stars. Assuming a quadratic
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regression model with parameter β = (µ, β1, β2)
>, we want to test the hypothesis that

the true function is a constant function, i.e. H0 : β1 = β2 = 0 or H0 : β ∈ Θ0 where
Θ0 = {β ∈ IR3; β1 = β2 = 0}. The simplicial likelihood depth dS((µ, 0, 0)>, (z1, . . . , zN ))
for different horizontal lines through µ is plotted in Figure 2 by 2000 points between
the minimum and maximum value of yn. It turns out that supβ∈Θ0

dS(β, (z1, . . . , zN)) =
supµ∈IR dS((µ, 0, 0)>, (z1, . . . , zN)) = 0.104 and that the maximum depth is attained by
µ = 5.1. Hence the test statistic according to (8) has the value -0.966 since γβ = (1

2
)3 and

N = 46. Comparing this value with the 10%-quantile of Table 1 leads to a rejection of
the hypothesis for the significance level 10%.

For testing the hypothesis that the regression function is linear, i.e. H0 : β2 = 0 or
H0 : β ∈ Θ0 where Θ0 = {β ∈ IR3; β2 = 0}, the catline of Hubert and Rousseeuw (1998)
was calculated and plotted in Figure 1. It has the parameter (µ, β1, β2) = (−8.6, 3.1, 0)
and its simplicial likelihood depth is 0.134. Hence the test statistic according to (8)
satisfies supβ∈Θ0

N(dS(β, (z1, . . . , zN))−γβ) ≥ 46 ∗ (0.134− 0.125) = 0.414 which is larger
than the 70%-quantile of Table 1. Hence the hypothesis can not be rejected.

Note that the classical F-test provides for H0 : β1 = β2 = 0 and H0 : β2 = 0 a p-value
less than 0.0001. This is due to the outliers, giants, in the left upper corner of Figure 1.
Without these outliers, a linear regression line is a good description of the data. Hence the
test for H0 : β2 = 0 based on the simplicial likelihood depth is outlier robust. However, a
horizontal line is not a good description of the data. But the test based on the simplicial
likelihood depth rejects this hypothesis only with respect to the significance level 10%.
Hence the efficiency of this test is not so good as for the classical test. But this is the
case for all nonparametric tests. 2

5 Conclusion and open problems

The possibility to base tests on the simplicial likelihood depth is a tractable way of
deriving tests for polynomial regression. Although it is only demonstrated up to quadratic
regression it seems reasonable that this can be done with the same method also for
polynomial regression of higher order. There, differential equations of higher order appear
so that the set of possible solutions is larger which make the calculations longer and more
tedious.

An open problem is the calculation of supθ∈Θ0
dS(θ, (z1, . . . , zN)). A simple possibility

is to use a global search based on all polynomials of the hypothesis through q points
like in Example 7. Certainly there are better methods similar to those proposed for
maximum regression depth estimators by Rousseeuw and Hubert (1999), Rousseeuw and
Struyf (1998), Van Aelst et al. (2002). An open problem is also the question whether
the presented method can be used for other problems like multiple regression and quite

19



different models. While likelihood depth and likelihood depth estimators for regression
with observations with discrete distributions can be derived via the method for regres-
sion depth of Rousseeuw and Hubert (1999), the proposed method for deriving tests is not
working for discrete distributions of observations. The tests can be based on the simplicial
likelihood depth but E(ψθ(Z1, . . . , Zq+1)|Z1 = z1) cannot be derived as presented since
P (Ỹn − x(Tn)>β ≥ 0|Tn) is not constant even if Ỹn is the appropriate transformed obser-
vation. Hence alternative methods for calculating E(ψθ(Z1, . . . , Zq+1)|Z1 = z1) also for
polynomial regression must be found. It is very likely that E(ψθ(Z1, . . . , Zq+1)|Z1 = z1)
is not independent of z1 as for exponential distribution so that the simplicial likelihood
depth would not be a degenerated U-statistic.

6 Proofs

Lemma 3 If T1, . . . , Tn+1 are i.i.d. with differentiable distribution function G and t, s ∈
IR, then

a) P (T1 < T2 < . . . < Tn+1|T1 = t) =
n∑

i=0

(−1)i 1

(n− i)! i!
G(t)i,

b) P (T1 < T2 < . . . < Tn+1|Tn+1 = t) =
1

n!
G(t)n,

c) P (T1 < T2 < . . . < Tm+1 < . . . < Tn+1|Tm+1 = t)

=
1

m!

n−m∑

i=0

(−1)i 1

(n−m− i)! i!
G(t)m+i for m = 0, 1, . . . , n,

d)
n∑

m=0

P (T1 < T2 < . . . < Tm+1 < . . . < Tn+1|Tm+1 = t) =
1

n!

e) P (t < T1 < . . . < Tn < s) =
n∑

i=0

(−1)i 1

(n− i)! i!
G(s)n−i G(t)i.

Proof of Lemma 3.
Using

∫ b

a
G(x)k g(x) dx = 1

k+1

(
G(b)k+1 −G(a)k+1

)
for g = G′, the assertions a) und b)

can be proved by induction over n. The assertion of c) is obtained by using a) and b)
since independence implies

P (T1 < T2 < . . . < Tm+1 < . . . < Tn+1|Tm+1 = t)

= P (T1 < T2 < . . . < Tm < t) P (t < Tm+2 < . . . < Tn+1).

By summing over the probabilities of c), the assertion d) follows. Induction over n provides
also the assertion e).2
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Lemma 4 Let T1, . . . , Tn be i.i.d. with differentiable distribution function G, t, s ∈ IR
with t < s, and define for k, l,m ∈ IN ∪ {0} with k + l +m = n

α(k + 1, k + l + 2) :=
∑

π∈Pn

P
(
Tπ(1) < . . . < Tπ(k) < t < Tπ(k+1)

< . . . < Tπ(k+l) < s < Tπ(k+l+1) < . . . < Tπ(n)

)
.

Then

a) α(k + 1, k + l + 2) =
(k + l +m)!

k! l! m!
G(t)k (G(s) −G(t))l (1 −G(s))m,

b)
n∑

k=0

n−k∑

l=0

α(k + 1, k + l + 2) = 1,

c)

bn
2
c∑

l=0

n−2l∑

k=0

α(k + 1, k + 2l + 2) =
1

2
(1 − 2|G(s) −G(t)|)n +

1

2
.

Proof of Lemma 4.
a) The independence assumption and Lemma 3 a), b) and e) imply

P (T1 < . . . < Tk < t < Tk+1 < . . . < Tk+l < s < Tk+l+1 < . . . < Tn)

= P (T1 < . . . < Tk < t) P (t < Tk+1 < . . . < Tk+l < s) P (s < Tk+l+1 < . . . < Tn)

=
G(t)k

k! l! m!

l∑

i=0

(
l

i

)
G(s)l−i G(t)i (−1)i

m∑

j=0

(
m

j

)
(−1)j G(s)j

=
1

k! l! m!
G(t)k (G(s) −G(t))l (1 −G(s))m.

b) Part a) imply

n∑

k

n−k∑

l=0

α(k + 1, k + l + 2)

=
n∑

k

(k + l + n− k − l)!

k! (n− k)!
G(t)k

n−k∑

l=0

(n− k)!

l! (n− k − l)!
(G(s) −G(t))l (1 −G(s))n−k−l

=
n∑

k

n!

k! (n− k)!
G(t)k (G(s) −G(t) + 1 −G(s))n−k

= (G(t) + 1 −G(t))n = 1.
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c) Part a) imply similarly as in b)

bn
2
c∑

l=0

n−2l∑

k=0

α(k + 1, k + 2l + 2)

=

bn
2
c∑

l=0

(
n

2l

)
(G(s) −G(t))2l

n−2l∑

k=0

(
n− 2l

k

)
(−1)k (G(s) −G(t))k

=

bn
2
c∑

l=0

(
n

2l

)
(G(s) −G(t))2l

n−2l∑

k=0, k even

(
n− 2l

k

)
(G(s) −G(t))k

+

bn
2
c∑

l=0

(
n

2l

)
(G(s) −G(t))2l

n−2l∑

k=0, k odd

(
n− 2l

k

)
(−1)k (G(s) −G(t))k.

For even k we have

bn
2
c∑

l=0

(
n

2l

)
(G(s) −G(t))2l

n−2l∑

k=0, k even

(
n− 2l

k

)
(G(s) −G(t))k

=

bn
2
c∑

l=0

(
n

2l

)
(G(s) −G(t))2l

bn
2
−lc∑

k=0

(
n− 2l

2k

)
(G(s) −G(t))2k

=

bn
2
c∑

l=0

bn
2
c∑

k=l

(G(s) −G(t))2k

(
n

2l

) (
n− 2l

2k − 2l

)

=

bn
2
c∑

k=0

(G(s) −G(t))2k

(
n

2k

) k∑

l=0

(
2k

2l

)

=

bn
2
c∑

k=1

(G(s) −G(t))2k

(
n

2k

) k∑

l=0

(
2k

2l

)
+ 1.

For odd k we obtain similarly

bn
2
c∑

l=0

(
n

2l

)
(G(s) −G(t))2l

n−2l∑

k=0, k odd

(
n− 2l

k

)
(−1)k (G(s) −G(t))k

=

bn
2
c∑

l=0

(
n

2l

)
(G(s) −G(t))2l

bn+1

2
−lc∑

k=1

(
n− 2l

2k − 1

)
(−1) (G(s) −G(t))2k−1

= −
bn

2
c∑

l=0

bn+1

2
c∑

k=l+1

(G(s) −G(t))2k−1

(
n

2l

) (
n− 2l

2k − 2l − 1

)

= −
bn+1

2
c∑

k=1

(G(s) −G(t))2k−1

(
n

2k − 1

) k−1∑

l=0

(
2k − 1

2l

)
.
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Moreover we have

k∑

l=0

(
2k

2l

)
= 22k−1 and

k−1∑

l=0

(
2k − 1

2l

)
= 22k−2, (12)

where the second equality in (12) can be seen by the equality

2
k−1∑

l=0

(
2k − 1

2l

)
=

2k−1∑

l=0

(
2k − 1

l

)
.

For showing the first equality in (12), induction over k and the property
(

n

k

)
+
(

n

k+2

)
=(

n+2
k+1

)
− 2

(
n

k+1

)
are needed additionally.

Hence we obtain

bn
2
c∑

l=0

n−2l∑

k=0

α(k + 1, k + 2l + 2)

=

bn
2
c∑

k=1

(G(s) −G(t))2k

(
n

2k

)
22k−1 + 1 −

bn+1

2
c∑

k=1

(G(s) −G(t))2k−1

(
n

2k − 1

)
22k−2

= 1 +
1

2

n∑

k=1

|G(s) −G(t)|k 2k (−1)k

(
n

k

)

=
1

2
(1 − 2|G(s) −G(t)|)n +

1

2
.2

Proof of Proposition 1.
Let

Pq+1(m) := {π : {1, . . . , q + 1} \ {m} → {1, . . . , q + 1} \ {m}; π(i) 6= π(j) for i 6= j}

the set of all permutations of {1, . . . , q + 1} \ {m} and set Rn := Yn − x(Tn)>β, rn :=
yn − x(tn)>β for the residuals.
a) Since the indicator variables 1{Rn ≥ 0} and the explanatory variables Tn are indepen-
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dent, we have

E (ψβ((Z1, . . . , Zq+1)|Z1 = (y1, t1)))

=
∑

π∈Pq+1

(
q+1∏

i=1

P
(
Rπ(i) (−1)i ≥ 0|R1 = r1

)
+

q+1∏

i=1

P
(
Rπ(i) (−1)i ≤ 0|R1 = r1

)
)

· P (Tπ(1) < Tπ(2) < . . . < Tπ(q+1)|T1 = t1)

=

q+1∑

m=1

∑

π∈Pq+1(m)

(
p

q+1

2
−1 (1 − p)

q+1

2 P (Rm ≥ 0|Rm = rm)

+ p
q+1

2 (1 − p)
q+1

2
−1P (Rm ≤ 0|Rm = rm)

)

· P (Tπ(1) < Tπ(2) < . . . < Tπ(m−1) < Tm < Tπ(m+1) < . . . < Tπ(q+1)|Tm = t1)

=

q+1∑

m=1

q! p
q+1

2
−1 (1 − p)

q+1

2
−1 ((1 − p) 1{rm ≥ 0} + p 1{rm ≤ 0})

· P (T1 < T2 < . . . < Tq+1|Tm = t1)

= p
q+1

2
−1 (1 − p)

q+1

2
−1 q!

·
(
(1 − p) 1{y1 − x(t1)

>β ≥ 0} + p 1{y1 − x(t1)
>β ≤ 0}

)

·
q+1∑

m=1

P (T1 < T2 < . . . < Tq+1|Tm = t1).

Lemma 3 d) provides then the assertion.
b) Analogously to a) we have

E (ψβ((Z1, . . . , Zq+1)|Z1 = (y1, t1)))

=

q

2∑

m=0

∑

π∈Pq+1(2m+1)

(
p

q

2 (1 − p)
q

2P (R2m+1 ≥ 0|R2m+1 = r2m+1)

+ p
q

2 (1 − p)
q

2P (R2m+1 ≤ 0|R2m+1 = r2m+1)
)

· P (Tπ(1) < Tπ(2) < . . . < Tπ(2m) < T2m+1 < Tπ(2m+2) < . . . < Tπ(q+1)|T2m+1 = t1)

+

q

2∑

m=1

∑

π∈Pq+1(2m)

(
p

q

2
−1 (1 − p)

q

2
+1P (R2m ≥ 0|R2m = r2m)

+ p
q

2
+1 (1 − p)

q

2
−1P (R2m ≤ 0|R2m = r2m)

)

· P (Tπ(1) < Tπ(2) < . . . < Tπ(2m−1) < T2m < Tπ(2m+1) < . . . < Tπ(q+1)|T2m = t1).2
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Proof of Proposition 2.
Set

α(k + 1, k + l + 2, t1, t2) :=
∑

π∈Pq−1

P
(
Tπ(1) < . . . < Tπ(k) < t1 < Tπ(k+1)

< . . . < Tπ(k+l) < t2 < Tπ(k+l+1) < . . . < Tπ(q−1)

)

for t1 < t2 and

H :=
1

2
(1 − 2|G(t1) −G(t2)|)q−1 +

1

2
.

According to Lemma 4 b) and c) we have

H =

b q−1

2
c∑

l=0

q−1−2l∑

k=0

(α(k + 1, k + 2l + 2, t1, t2) 1{t1 < t2}

+ α(k + 1, k + 2l + 2, t2, t1) 1{t2 < t1})

=

q−1∑

k=0

q−1−k∑

l=0, l even
(α(k + 1, k + l + 2, t1, t2) 1{t1 < t2}

+ α(k + 1, k + l + 2, t2, t1) 1{t2 < t1})

and

q−1∑

k=0

q−1−k∑

l=0, l odd

(α(k + 1, k + l + 2, t1, t2) 1{t1 < t2}

+ α(k + 1, k + l + 2, t2, t1) 1{t2 < t1})

=

(
1 −

q−1∑

k=0

q−1−k∑

l=0, l even
α(k + 1, k + l + 2, t1, t2)

)
1{t1 < t2}

+

(
1 −

q−1∑

k=0

q−1−k∑

l=0, l even
α(k + 1, k + l + 2, t2, t1)

)
1{t2 < t1}

= 1 −H.

This implies because of the independence of the residuals Rn = Yn − x(Tn)>β and Tn
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E(ψβ(Z1, . . . , Zq+1)|Z1 = z1, Z2 = z2)

=
∑

π∈Pq+1

(
P

(
q+1⋂

k=1

{Rπ(k) (−1)k ≥ 0}|R1 = r1, R2 = r2

)

+ P

(
q+1⋂

k=1

{Rπ(k) (−1)k ≤ 0}|R1 = r1, R2 = r2

))

· P (Tπ(1) < . . . < Tπ(q+1)|T1 = t1, T2 = t2)

=
∑

π∈Pq+1

π−1(1)−π−1(2) odd

(
1

2

)q−1

(1{r1 ≥ 0} 1{r2 ≤ 0} + 1{r1 ≤ 0} 1{r2 ≥ 0})

· P (Tπ(1) < . . . < Tπ(q+1)|T1 = t1, T2 = t2)

+
∑

π∈Pq+1

π−1(1)−π−1(2) even

(
1

2

)q−1

(1{r1 ≥ 0} 1{r2 ≥ 0} + 1{r1 ≤ 0} 1{r2 ≤ 0})

· P (Tπ(1) < . . . < Tπ(q+1)|T1 = t1, T2 = t2)

=

(
1

2

)q−1

τ(r1, r2)
∑

π∈Pq+1

π−1(1)−π−1(2) odd

P (Tπ(1) < . . . < Tπ(q+1)|T1 = t1, T2 = t2)

+

(
1

2

)q−1

(1 − τ(r1, r2))
∑

π∈Pq+1

π−1(1)−π−1(2) even

P (Tπ(1) < . . . < Tπ(q+1)|T1 = t1, T2 = t2)

=

(
1

2

)q−1

τ(r1, r2)

q−1∑

k=0

q−1−k∑

l=0, l even
(α(k + 1, k + l + 2, t1, t2) 1{t1 < t2}

+ α(k + 1, k + l + 2, t2, t1) 1{t2 < t1})

+

(
1

2

)q−1

(1 − τ(r1, r2))

q−1∑

k=0

q−1−k∑

l=0, l odd

(α(k + 1, k + l + 2, t1, t2) 1{t1 < t2}

+ α(k + 1, k + l + 2, t2, t1) 1{t2 < t1})

=

(
1

2

)q−1

τ(r1, r2) H +

(
1

2

)q−1

(1 − τ(r1, r2)) (1 −H)

=

(
1

2

)q−1((
τ(r1, r2) −

1

2

)
(2H − 1) +

1

2

)

=

(
1

2

)q−1(
τ(r1, r2) −

1

2

)
(1 − 2|G(t1) −G(t2)|)q−1 +

(
1

2

)q

.2
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Proof of Lemma 1
Since

∫ 1

0

(
1

2
− |t− s|

)
ϕ(t) dt

=
1

2

∫ 1

0

ϕ(t) dt−
∫ s

0

(s− t)ϕ(t) dt−
∫ 1

s

(t− s) ϕ(t) dt

=
1

2

∫ 1

0

ϕ(t) dt− 2 s

∫ s

0

ϕ(t) dt+ 2

∫ s

0

t ϕ(t) dt (13)

−
∫ 1

0

t ϕ(t) dt+ s

∫ 1

0

ϕ(t) dt,

the differentiation of λϕ(s) =
∫ 1

0

(
1
2
− |t− s|

)
ϕ(t) dt two times leads to

λϕ′(s) = −2

∫ s

0

ϕ(t) dt− 2 s ϕ(s) + 2 s ϕ(s) +

∫ 1

0

ϕ(t) dt,

λ ϕ′′(s) = −2ϕ(s) or ϕ′′(s) +
2

λ
ϕ(s) = 0.

The solutions of the last differential equation have the form (see e.g. Kamke 1947, p. 252,
or Brauer and Nohel 1968, p. 88)

ϕ(s) = c1 exp

(
s

√
−2

λ

)
+ c2 exp

(
−s
√

−2

λ

)
, (14)

if 2
λ
< 0, and

ϕ(s) = c1 cos

(
s

√
2

λ

)
+ c2 sin

(
s

√
2

λ

)
, (15)

if 2
λ
> 0.

Now set ψ(s) :=
√

|λ|
2
ϕ′(s). Then we have ϕ′(s) =

√
2
|λ|
ψ(s) and − 2

λ
ϕ(s) = ϕ′′(s) =

√
2
|λ|
ψ′(s) so that −sgn(λ)

√
|λ|
2
ψ′(s) = ϕ(s) and

∫ s

0

ϕ(t) dt = −sgn(λ)

√
|λ|
2

(ψ(s) − ψ(0)), (16)

∫ s

0

t ϕ(t) dt = −sgn(λ)

√
|λ|
2
t ψ(t)

∣∣∣∣∣

s

0

+ sgn(λ)

√
|λ|
2

∫ s

0

ψ(t) dt

= −sgn(λ)

√
|λ|
2
s ψ(s) + sgn(λ)

|λ|
2

(ϕ(s) − ϕ(0)). (17)
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Using these properties in (13), we obtain

λ ϕ(s)

= −1

2
sgn(λ)

√
|λ|
2

(ψ(1) − ψ(0)) + 2 s sgn(λ)

√
|λ|
2

(ψ(s) − ψ(0))

− 2 sgn(λ)

√
|λ|
2
s ψ(s) + 2 sgn(λ)

|λ|
2

(ϕ(s) − ϕ(0))

+ sgn(λ)

√
|λ|
2
ψ(1) − sgn(λ)

|λ|
2

(ϕ(1) − ϕ(0))

− s sgn(λ)

√
|λ|
2

(ψ(1) − ψ(0))

= λ ϕ(s) + s sgn(λ)

√
|λ|
2

(−2 ψ(0) − ψ(1) + ψ(0))

+ sgn(λ)

√
|λ|
2

(
−1

2
ψ(1) +

1

2
ψ(0) + ψ(1)

)
+
λ

2
(−2ϕ(0) − ϕ(1) + ϕ(0)) .

This implies ψ(0) + ψ(1) = 0 and ϕ(0) + ϕ(1) = 0 or

ϕ(0) + ϕ(1) = 0 and ϕ′(0) + ϕ′(1) = 0. (18)

Now set a :=
√

2
|λ|

. If λ < 0, then any eigenfunction ϕ must satisfy (14) and (18). This
means

0 = ϕ(0) + ϕ(1) = c1(1 + exp(a)) + c2(1 + exp(−a))

⇐⇒ c2 = −c1
1 + exp(a)

1 + 1
exp(a)

= −c1 exp(a),

0 = ϕ′(0) + ϕ′(1) = a c1(1 + exp(a)) − a c2(1 + exp(−a))

⇐⇒ c2 = c1
1 + exp(a)

1 + 1
exp(a)

= c1 exp(a),

implying c1 = 0 = c2. Hence the eigenfunction cannot have the form (14).

If λ > 0, then the eigenfunction ϕ must satisfy (15) and (18). Then we obtain

0 = ϕ(0) + ϕ(1) = c1(1 + cos(a)) + c2 sin(a), (19)

0 = ϕ′(0) + ϕ′(1) = a (c2(1 + cos(a)) − c1 sin(a)) . (20)

Both equations (19) and (20) are satisfied for a = (2k+1)π with k ∈ ZZ. For a 6= (2k+1)π,
equation (19) implies

c1 = −c2
sin(a)

1 + cos(a)
.
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Plugging this in (20) yields

0 = c2

(
1 + cos(a) +

sin(a)2

1 + cos(a)

)

⇐⇒ 0 = 1 + 2 cos(a) + cos(a)2 + sin(a)2 = 2 + 2 cos(a),

which implies −1 = cos(a) and thus the contradiction a = (2k + 1)π. Hence the eigen-
functions can be only of the form

ϕ(s) = c1 cos(as) + c2 sin(as)

with a = (2k + 1)π and k ∈ ZZ. Since cos((2k + 1)π s) = cos(−(2k + 1)π s) and
sin((2k + 1)π s) = − sin(−(2k + 1)π s) we can restrict ourselves to k ∈ IN ∪ {0}. Under
this restriction the functions

{√
2 cos((2k − 1)π s); k ∈ IN

}
∪
{√

2 sin((2k − 1)π s); k ∈ IN
}

are orthogonal and normalized. Since a2 := 2
|λ|

= 2
λ
, the corresponding eigenvalues are

given by λ = 2
(2k−1)2 π2 with k ∈ IN . 2

Proof of Lemma 2
Using similar arguments as in (13) we have

∫ 1

0

(
1

4
− |t− s| + (t− s)2

)
ϕ(t) dt

=
1

4

∫ 1

0

ϕ(t) dt− 2 s

∫ s

0

ϕ(t) dt+ 2

∫ s

0

t ϕ(t) dt (21)

−
∫ 1

0

t ϕ(t) dt+ s

∫ 1

0

ϕ(t) dt

+

∫ 1

0

t2 ϕ(t) dt− 2 s

∫ 1

0

t ϕ(t) dt+ s2

∫ 1

0

ϕ(t) dt.

Differentiation of λϕ(s) =
∫ 1

0

(
1
4
− |t− s| + (t− s)2

)
ϕ(t) dt three times leads to

λϕ′(s) = −2

∫ s

0

ϕ(t) dt− 2 s ϕ(s) + 2 s ϕ(s) +

∫ 1

0

ϕ(t) dt

− 2

∫ 1

0

t ϕ(t) dt+ 2 s

∫ 1

0

ϕ(t) dt,

λ ϕ′′(s) = −2ϕ(s) + 2

∫ 1

0

ϕ(t) dt,

λ ϕ′′′(s) = −2ϕ′(s) or ϕ′′′(s) +
2

λ
ϕ′(s) = 0.
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The solutions of the last differential equation have the form (see e.g. Kamke 1947, p. 252,
or Brauer and Nohel 1968, p. 88)

ϕ(s) = c1 exp

(
s

√
−2

λ

)
+ c2 exp

(
−s
√

−2

λ

)
+ c3, (22)

if 2
λ
< 0, and

ϕ(s) = c1 cos

(
s

√
2

λ

)
+ c2 sin

(
s

√
2

λ

)
+ c3, (23)

if 2
λ
> 0.

In both cases (22) and (23), the solution ϕ can be written as ϕ(s) = ϕ̃(s) + c3. Now

set ψ(s) :=
√

|λ|
2
ϕ̃′(s). Then we have in both cases −sgn(λ)

√
|λ|
2
ψ′(s) = ϕ̃(s), i.e. the

same property which ϕ satisfied in the proof of Lemma 1. Besides the properties (16) and
(17) used in the proof of Lemma 1, we will use

∫ s

0

t2 ϕ̃(t) dt = −sgn(λ)

√
|λ|
2
t2 ψ(t)

∣∣∣∣∣

s

0

+ sgn(λ) 2

√
|λ|
2

∫ s

0

t ψ(t) dt

= −sgn(λ)

√
|λ|
2
s2 ψ(s) + sgn(λ)|λ| t ϕ̃(t)|s0 − sgn(λ)|λ|

∫ s

0

ϕ̃(t) dt

= −sgn(λ)

√
|λ|
2
s2 ψ(s) + λ s ϕ̃(s) + |λ|

√
|λ|
2

(ψ(s) − ψ(0)) (24)

and

∫ 1

0

(
1

4
− |t− s| + (t− s)2

)
dt

=
1

4
−
∫ s

0

(s− t) dt−
∫ 1

s

(t− s) dt+

∫ 1

0

(t2 − 2st+ s2) dt

=
1

4
− s2 +

1

2
s2 − 1

2
+

1

2
s2 + s(1 − s) +

1

3
− s+ s2

=
1

12
. (25)

Plugging the properties (16), (17), (24), (25) in (21), we obtain
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λ ϕ(s) = λ ϕ̃(s) + λ c3

= −1

4
sgn(λ)

√
|λ|
2

(ψ(1) − ψ(0)) + 2 s sgn(λ)

√
|λ|
2

(ψ(s) − ψ(0))

− 2 sgn(λ)

√
|λ|
2
s ψ(s) + 2 sgn(λ)

|λ|
2

(ϕ̃(s) − ϕ̃(0))

+ sgn(λ)

√
|λ|
2
ψ(1) − sgn(λ)

|λ|
2

(ϕ̃(1) − ϕ̃(0))

− s sgn(λ)

√
|λ|
2

(ψ(1) − ψ(0))

− sgn(λ)

√
|λ|
2
ψ(1) + λ ϕ̃(1) + |λ|

√
|λ|
2

(ψ(1) − ψ(0))

+ 2 s sgn(λ)

√
|λ|
2
ψ(1) − s λ (ϕ̃(1) − ϕ̃(0))

− s2 sgn(λ)

√
|λ|
2

(ψ(1) − ψ(0))

+ c3
1

12

= λ ϕ̃(s) − s2 sgn(λ)

√
|λ|
2

(ψ(1) − ψ(0))

+ s sgn(λ)

√
|λ|
2

(−2 ψ(0) − ψ(1) + ψ(0) + 2ψ(1))

−s λ (ϕ̃(1) − ϕ̃(0))

+ sgn(λ)

√
|λ|
2

(
−1

4
ψ(1) +

1

4
ψ(0) + ψ(1) − ψ(1)

)

+
λ

2
(−2ϕ̃(0) − ϕ̃(1) + ϕ̃(0) + 2ϕ̃(1))

+ |λ|
√

|λ|
2

(ψ(1) − ψ(0))

+ c3
1

12
.

This implies ψ(1) − ψ(0) = 0 and ϕ̃(1) − ϕ̃(0) = 0 or

ϕ̃(1) − ϕ̃(0) = 0 and ϕ̃′(1) − ϕ̃′(0) = 0. (26)

We also get λ = 1
12

or c3 = 0. Now set a :=
√

2
|λ|

.
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If λ < 0, then any eigenfunction ϕ must satisfy (22) and (26). This means

0 = ϕ̃(1) − ϕ̃(0) = c1(exp(a) − 1) + c2(exp(−a) − 1)

⇐⇒ c2 = −c1
exp(a) − 1

1
exp(a)

− 1
= c1 exp(a),

0 = ϕ̃′(1) − ϕ̃′(0) = a c1(exp(a) − 1) − a c2(exp(−a) − 1)

⇐⇒ c2 = c1
exp(a) − 1

1
exp(a)

− 1
= −c1 exp(a),

implying c1 = 0 = c2. Since λ = 1
12
> 0 for c3 6= 0 we can conclude that there is no

eigenfunction of the form (22).

If λ > 0, then the eigenfunction ϕ must satisfy (23) and (26). Then we obtain

0 = ϕ̃(1) − ϕ̃(0) = c1(cos(a) − 1) + c2 sin(a), (27)

0 = ϕ̃′(1) − ϕ̃′(0) = a (c2(cos(a) − 1) − c1 sin(a)) . (28)

Both equations (27) and (28) are satisfied for a = 2 k π with k ∈ ZZ. For a 6= 2 k π,
equation (27) implies

c1 = −c2
sin(a)

cos(a) − 1
.

Plugging this in (28) yields

0 = c2

(
cos(a) − 1 +

sin(a)2

cos(a) − 1

)

⇐⇒ 0 = 1 − 2 cos(a) + cos(a)2 + sin(a)2 = 2 − 2 cos(a),

which implies 1 = cos(a) and thus the contradiction a = 2 k π. Hence the eigenfunctions
can be only of the form

ϕ(s) = c1 cos(as) + c2 sin(as) + c3

with a = 2 k π and k ∈ ZZ. Since a2 := 2
|λ|

= 2
λ

we have λ = 2
(2k)2 π2 6= 1

12
for all k ∈ IN .

Hence either c1 = 0 = c2 or c3 = 0 must be satisfied. In the case of c3 = 0 we can restrict
ourselves to k ∈ IN because of symmetry and we get that the functions

{√
2 cos(2k π s); k ∈ IN

}
∪
{√

2 sin(2k π s); k ∈ IN
}

are orthogonal and normalized. These functions are orthogonal to the constant function
c3 which should satisfy c3 = 1 to be normalized. 2
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Proof of Theorem 2
a) Properties (9), (11) and Lemma 1 provide

E(ψβ(Z1, . . . , Zq+1)|Z1 = z1, Z2 = z2) −
1

4

=

(
τ(r1, r2) −

1

2

) (
1

2
− |G(t1) −G(t2)|

)

= −1

2
ϕ∗(r1) ϕ∗(r2)

∞∑

l=1

λl ϕl(G(t1)) ϕl(G(t2))

=
∞∑

l=1

−1

2
λl ϕ∗(r1) ϕl(G(t1)) ϕ∗(r2) ϕl(G(t2)).

Since the residuals Rn and the explanatory variables Tn are independent, the functions
ϕ̂l(y, t) := ϕ∗(y − x(t)>β) ϕl(G(t)) with l ∈ IN are orthogonal and normalized. Hence

λ̂l := −1
2
λl with λ̂2l−1 = −1

π2 (2l−1)2
and λ̂2l = −1

π2 (2l−1)2
for l ∈ IN are the eigenvalues of the

spectral decomposition of E(ψβ(Z1, . . . , Zq+1)|Z1 = z1, Z2 = z2) − 1
4

so that the assertion
follows from (7).
b) This assertion follows completely analogous to that in a) by using Lemma 2 instead of
Lemma 1. 2
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