
Micro Crack Detection with Dijkstra’s Shortest

Path Algorithm

Christina Gunkel1 Alexander Stepper1 Arne C. Müller2

Christine H. Müller3∗

December 8, 2009

1University of Kassel, Department of Mathematics, D-34109 Kassel, Germany

2Free University of Berlin, Department of Mathematics and Computer Science,

Arnimallee 14, D-14195 Berlin, Germany

3 University of Technology Dortmund, Faculty of Statistics, Vogelpothsweg 87,

D-44221 Dortmund, Germany

Abstract

A package based on the free software R is presented which allows the

automatic detection of micro cracks and corresponding statistical analysis of

crack quantities. It uses a shortest path algorithm for detecting micro cracks in

situations where the cracks are surrounded by plastic deformations and where

a discrimination between cracks and plastic deformations is difficult. In a

first step, crack clusters are detected as connected components of pixels with

values below a given threshold value. Then the crack paths are determined by

∗Research supported by the SFB/TR TRR 30 Project D6

1

Dijkstra’s algorithm as longest shortest paths through the darkest parts of the

crack clusters. Linear parts of kinked paths can be identified with this. The

new method was applied to over 2000 images. Some statistical applications

and a comparison with another free image tool are given.

Keywords: Image analysis; Crack detection; Crack cluster; Crack path; Dijkstra’s

algorithm; Linear parts of a path

1 Introduction

The understanding of crack initiation and crack growth is very important for pre-

dicting the life time of products as wheels of trains or hip replacement. Macro cracks

origin from micro cracks which are only visible with a microscope. The initiation

and growth of micro cracks is a stochastic process. More and more approaches exist

for describing the initiation and growth of micro cracks by stochastic models. See

e.g. [1], [2], [3], [4], [5], [6]. These models must be validated by statistical methods.

Since these models are rather complicated models, a large amount of data on cracks

must be used. These data can be obtained from microscopic images from the surface

of assays under strain. Often hundreds of micro cracks are visible in such images,

at least at a later stage of the fatigue process.

To detect this lot of micro cracks, we developed a method based on a shortest

path algorithm. Edge detection methods (see e.g. [7], [8], [9]) cannot be used since

the cracks are surrounded by dark areas. The reason is that micro cracks origin

from plastic deformations of the material visible in darker areas. Indeed it is often

not easy to distinguish between a plastic deformation and a micro crack since micro

2

cracks are always surrounded by more or less large areas of plastic deformations (see

Figure 1 a)). Therefore we call the areas of micro cracks and surrounding plastic

deformations ”crack clusters”.

a) b)

Figure 1: a) original image at Time 18, b) detected crack paths

Since micro cracks origin from plastic deformations, it is no problem for a quanti-

tative analysis if the discrimination between micro cracks and plastic deformations is

not perfect. But real micro cracks differ from plastic deformations by darker colors.

Hence the aim is to follow mainly the darkest parts of a crack cluster.

According to the knowledge of the authors, existing crack analysis tools are only

able to highlight cracks and crack clusters (see e.g. [10] and [11]). Or they have

the ability to find crack clusters but cannot find the crack paths. Others are only

able to detect few cracks. See e.g. [12], [13], [14] [15] [16]. Like other free and

commercial tools, for example the free software UTHSCSA Image Tool1 developed

1http://ddsdx.uthscsa.edu/dig/itdesc.html, Department of Dental Diagnostic Science at
The University of Texas Health Science Center, San Antonio, Texas

3

by C. D. Wilcox, S. B. Dove, W. D. McDavid, and D. B. Greer describes the crack

clusters only by ellipses and rectangles which are easily obtained by calculating

the variances and covariances of the positions of the pixels inside the cluster. The

lengths of the main axes of the ellipses are used as the lengths of the cracks (see

also [15]). This is of course only a bad approximation of true crack paths, i.e. the

darkest parts of the crack cluster. Moreover cracks are kinked and curved so that

the true length of a crack is much longer then the distance between its start and

end point. It is also important for a detailed crack analysis to know what are the

kinks and curves of a crack.

Better approximations of the crack paths can be given by skeletonization and

thinning. See e.g. [17], [8], [9]. But simple skeletonization methods do not take

into account the gray levels in the clusters. Hence they do not result in the darkest

parts of the cluster. Certainly, it is possible to modify skeletonization so that it is

resulting in the darkest parts. But this modification would not be easy. Moreover,

every skeletonization method is very sensitive to small changes of the cluster and

provides usually tree-like paths for one cluster. For micro cracks however, it is very

important to obtain only one path for each cluster since the lengths of such main

paths are most relevant for the stability of the material. This is different to the

approach of Iyer and Sinha [10] who used a tree-like geometry for cracks.

The method proposed here bases on a shortest path algorithm. Shortest path

algorithms have many applications in image analysis as for object segmentation and

disparity estimation (see [16]). They were also applied for crack detection, but only

in the case of one crack as a circular crack of a borehole core [16] or one crack from

top to bottom as in [14]. Moreover, the crack paths in [14] and [16] follow structures

which are given already by lines. These conditions are not satisfied for micro cracks.

4

Micro crack paths must be determined inside the crack clusters and there is a large

amount of crack clusters. Our method uses Dijkstra’s shortest path algorithm to

determine the longest shortest path in the crack cluster which follows the darkest

parts of the crack cluster. Thereby it uses also gray areas so that detected cracks

are not interrupted by less dark parts. Since our method provides the whole crack

path, kinks and curves of the cracks can be analyzed. It is applicable in the presence

of hundreds of crack clusters.

The method is implemented in C and included in a R package. R provided by

R Development Core Team [18] is a free software with a huge amount of statistical

methods. It is meanwhile widespread in the statistical community. Hence cracks

detected inside R can be easily analyzed with many statistical methods provided by

R. Since R is also a programming language, additional tools for analyzing the cracks

can be easily implemented as well. Hence crack detection and statistical analysis

can be carried out with the same software.

Section 2 describes the new method. In Section 3, the method is applied to two

series of images each consisting of over 800 images. It is compared with the free

software UTHSCSA Image Tool in Section 4. In Section 5, some statistical analysis

of crack behavior is shown. In particular, there is shown how linear parts of a crack

path can be found.

2 Package crackrec

The R package crackrec, which can be downloaded from our homepage, contains six

functions, namely rbmp, shadow.remove, median.filter, threshold.msi, crackrec,

and crackplot, where rbmp and crackrec base on C and C++, respectively. The new

5

crack detection method is included in crackrec. The other functions are auxiliary

functions as the function rbmp which converts a 24-bit bmp file of an image into a

R matrix of pixel values ranging from 0 to 255.

a) b)

c) d)

Figure 2: a) crack cluster for a zigzag crack, b) detected crack path with � = 0 = �,
c) detected crack path with � = 1 = �, d) linear parts of the zigzag crack

The function crackrec provides the cracks from a gray level image matrix. It

proceeds in two steps: In a first step, crack clusters are identified as connected

components of pixels with pixel values below a given threshold value. Such a crack

cluster is shown in Figure 2 a) for a zigzag crack visible in the upper part of Figure

1 a). To calculate the crack path, the pixels of a crack cluster are understood as

vertices. Vertices that are directly adjacent are connected with edges, so a graph

6

arises. Edges connecting vertices which coincide in one component have length

L = 1. All other edges have length L =
√
2 since they connect vertices in diagonal

direction. The longest shortest path through this graph is the identified crack path

for this cluster. It can be determined with Dijkstra’s shortest path algorithm in

O(n ⋅ n ⋅ log n) steps when the cluster has n vertices (see e.g. Cormen et al. [19],

Chapter 24). The output of crackrec consists of three components. One component

called crackclusters is a list containing K matrices with the pixel positions of the

pixels of the K crack clusters which were found. The matrices are of size 2 × nk,

k = 1, . . . , K, where nk is the number of pixels in the k’th crack cluster. The second

component called crackpaths is a list containing K 2 × mk matrices with pixel

positions of the pixels of each crack path. The third component called cracks is a

6×K matrix where the six rows contain the lengths of the crack paths, the sizes of

the crack clusters, and the x and y coordinates of the start and end points of the

crack paths.

Simply using the length L of neighbor pixels leads to the curve given by triangles

in Figure 3 a) or to the detected crack path of Figure 2 b). These crack paths are

not following the darkest parts of the crack cluster and angles of kinked cracks are

cut. Note that several longest shortest paths exist in Figure 3 for this situation

since the cluster is a disk and every diameter of the disk and additional paths like

that given by triangles in Figure 3 a) are longest shortest paths through the disk.

To force the path to the darkest parts of the cluster, the pixel values greyV alueu

and greyV aluev of the two neighbor pixels u and v were used with some weights

additionally to the length L. Thereby the weights � and � are applied to the sum

of these pixel values and to the absolute value of their difference, respectively. I.e.

7

a) b)

Figure 3: test image for the weights: a) the path given by � = 0, � = 0 is marked
with triangles, that given by � = 1, � = 1 is marked by circles, b) the path given
by � = 1, � = 0 is marked by triangles, that given by � = 0, � = 1 is marked with
circles

the following distance was used

L ∗ (1 + � ∗ (greyV alueu + greyV aluev) + � ∗ ∣greyV alueu − greyV aluev∣)

This distance was used to determine the shortest paths between points inside the

crack cluster. However, the longest shortest path was calculated by using simply

the optical length, i.e. with � = 0 = �, to obtain the optical longest paths. The

test image in Figure 3 shows the effect of the choices � = 0 = �, � = 0, � = 1,

� = 1, � = 0, � = 1 = � for the determination of shortest paths. The best result

was obtained with � = 1 = � so we worked with this. But the choice � = 1, � = 0

is also quite good so that it is most important to have high weight on the sum of

the pixel values. Figure 2 c) shows the result for � = 1 = � for the zigzag crack.

8

The detected crack path now follows all angles and is not cutting them.

The recognized crack paths can be plotted with the function crackplot, either

in the original image or separately. If they are plotted in the original image, the

crack paths are plotted in red. For an improved identification of the start and end

points of the cracks, they are connected with a yellow line. These are the default

colors, but other colors can be chosen. Figure 1 b) shows the detected crack paths

for the image in Figure 1 a), where 448 cracks with a size greater than 4 pixels were

found.

3 Application of the method

We applied the new method to two series of images providing the surface of two

small steel assays under strain. Although the surface of interest has only a size

of 7×10 mm2, it was too large to cover it with one microscopic photo. Hence

only microscopic photos of segments of the surface could be obtained. The photos

were taken at different points of time t, where t means that the photos were made

after t ⋅ 1000 load cycles. For one assay, Assay 31, 15 different points of time were

considered, where photos of 54 segments were available for each point of time. For

the other assay, Assay 10, 29 different points of time were used and photos of 45

segments were obtained at each point of time. Each image segment has 696×512

pixels. The segments have different quality. Some have shadows at the border

and some are blurred. Since the segments overlap, they could be joined leading to

images of the whole surface with 3337×4165 pixels for Assay 31 and images with

2659×4221 pixels for Assay 10. These images were compressed for a faster analysis

to 1669×2083 and 1330×2111 images.

9

a) b)

c) d)

Figure 4: different threshold methods applied on the blurred image at t = 6 given
in a): b) method of Otsu (threshold=130), c) method of Ridler/Calvard (thresh-
old=128), d) method of steepest increase with bandwith 30 (threshold=105)

Crucial for the recognition method is a good threshold value. This should also

be determined automatically. We tried several methods and found that a method

proposed by Tsai [20] is most appropriate. Thereby the threshold is determined

as the steepest increase of a smoothed histogram of the pixel values where the

10

histogram is smoothed with the Gaussian kernel density estimator. The problem is

that the histogram of the pixel values and thus also the density estimator is almost

always unimodal so that classical methods like the method of Ridler and Calvard

[21] and Otsu [22] are overestimating the threshold. The same holds if simply the

mean gray level or more specialized threshold methods for unimodal and multimodal

distributions as described in [23], [24], [25] are used. The method of steepest increase

of the kernel density estimator is rather flexible since different bandwidths of the

kernel density estimator can be used. The higher the bandwidth is the smoother

the estimated density is. A smooth density has steepest increase at a point much

smaller than the mode of the distribution. Hence by using a rather high bandwidth,

we obtained the best result. This method is given by the function threshold.msi.

Figure 4 provides a comparison of different threshold methods. A blurred image was

used there, but similar results hold for the other images.

The best bandwidth depends on the method which is used for removing shadow.

For removing the shadow we used the method based on the median filter (see e.g.

[8]). We investigated a 51×51 and 201×201 window for the median filter. Figure 5

shows the results of three bandwidths for an image where the 51×51 median filter

was applied. The best bandwidth is here 30. Note thereby that a small bandwidth,

which provides the best approximation to the histogram of gray levels, leads to a

much too high threshold value as seen in Figure 5 a) and b). A too large bandwidth

like 40 is also bad since then the threshold is so small that cracks are separated as

the zigzag crack in the upper part of Figure 5 d). Other images behaves similar

so that we used for the 51×51 median filter always the bandwidth 30. For the

201×201 median filter, the bandwidth 50 appeared as appropriate bandwidth. This

was applied in Figure 1 b).

11

0 50 100 150 200 250

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Bw 4
Bw 30
Bw 40

a) b)

c) d)

Figure 5: effect of different bandwidths on the image in Figure 1 a): a) histogram
with different kernel density estimators, b) bandwidth = 4 (threshold=173), c) band-
width = 30 (threshold=143), d) bandwidth = 40 (threshold=130)

That a method for removing shadow is necessary shows Figure 6 a). There, the

shadow at the left border provides a very large crack cluster in which a very large

crack is found. Figure 6 b) shows the result of crackrec after applying the 51×51

median filter. For both images, threshold.msi was used with bandwidth 30 leading

12

to a threshold of 146 for the unfiltered image and a threshold of 188 for the filtered

image. We also tested other bandwidths for the unfiltered image but the result was

always unsatisfying.

a) b)

Figure 6: effect of filtering: a) without median filter, b) with median filter

Since the shadow only appears at the border of the image segments, we also

developed a special method shadow.remove for removing the shadow at the border.

This method is based on the mean gray level GB of a border strip with a width of 40

pixels and the mean GI of all gray levels in the inner part. If the difference between

GB and GI is greater than 10, then shadow.remove adds an exponential decreasing

function f with maximum at 0 of the form

f(x) = a exp

(
− x2

30W

)
+

a

4
exp

(
−x2

W

)

to the pixel values of the border. The quantity W is the width of the image in

horizontal or vertical direction, respectively. The value a is given by a = 40(GI −

GB)/�, where � is chosen such that the mean of the gray levels at the border strip

13

becomes GI . A result using this method, where the threshold is the minimum of

140 and 4/5 of the mean of the gray levels, is shown in Figure 7 a). In this case, it is

very similar to that in Figure 1 b) using the 201×201 median filter. But in Section

4 it is shown that there are some differences with respect to crack characteristics.

However, this method can only be used for the image segments but not for the whole

image consisting of the union of the image segments since the shadows are not only

appearing at the border in this case. For the whole image, only the median filter

is applicable. Here a median filter with a large window as a 201×201 window is

preferable since otherwise cracks passing over several image segments are separated.

a) b)

Figure 7: detected cracks for the image given in Figure 1 a): a) using shadow.remove
with min(140,4/5*mean(graylevel)), b) using UTHSCSA Image Tool

The computing time which is needed to calculate the detected cracks depends

on the number of crack clusters and the size of the crack clusters. Hence the larger

the threshold is, the more time is needed. The computing time is exceptionally high

for Figure 6 a), where the shadow provides a very large crack cluster. However, the

14

Image Size Band- Threshold Number of Maximum Computing
width crack crack length time

clusters in pixel in sec
Fig. 1 a), t = 0 696×512 30 203 25 28,49 <0,1
Fig. 1 a), t = 0 696×512 40 193 22 24,07 0,1
Fig. 1 a), t = 5 696×512 30 179 748 89,18 1,4
Fig. 1 a), t = 5 696×512 40 169 543 70,70 0,8
Fig. 1 a), t = 18 696×512 30 143 1091 299,29 14,8
Fig. 1 a), t = 18 696×512 40 130 970 211,89 6,1
Fig. 6 a), t = 0 696×512 30 146 732 842,47 4060,9
Fig. 6 a), t = 0 696×512 40 131 549 727,49 1966,5
Fig. 6 b), t = 0 696×512 30 188 29 53,63 0,3
Fig. 6 b), t = 0 696×512 40 178 20 48,38 0,3
Assay 31, t = 0 1669×2083 50 144 388 113,43 0,9
Assay 31, t = 5 1669×2083 50 139 4842 94,25 1,5
Assay 31, t = 18 1669×2083 50 115 12449 262,55 16,6
Assay 10, t = 0 1330×2111 50 144 432 72,57 0,6
Assay 10, t = 10 1330×2111 50 139 3798 84,01 0,7
Assay 10, t = 44 1330×2111 50 114 7217 325,84 3,7

Table 1: computing times of user and system for different images

computation is rather fast in all other cases as Table 1 shows. Even the 1669×2083

image given as the union of 54 image segments and the 1330×2111 image given as

the union of 45 image segments can be calculated in a rather short time at late

points of time t (t =̂ t×1000 load cycles) where many cracks exists. The computing

times in Table 1 were obtained using a 51×51 median filter for the image segments

and a 101×101 median filter for the compressed union of image segments.

4 Comparison with UTHSCSA Image Tool

To compare the new package with another free package, namely the UTHSCSA Image

Tool, the microscopic photos at 15 time points of Assay 31 described in Section

3 were used. Although some of the 54 image segments are blurred, all of them

were used. The comparison was based on the numbers of cracks, the maximum

15

crack lengths, the mean crack lengths, and the added crack lengths. Hence 4×54

quantities for each of the 15 points of time were calculated. While our package with

standard R commands provides these quantities automatically, a lot of manual labor

was necessary to obtain these quantities for UTHSCSA Image Tool. UTHSCSA Image

Tool produces for each image only a text file with some quantities as number of

cracks and lengths of the main axes of the ellipses circumscribing the cracks. These

results for the 54 image sections had to be combined by hand for each point of time.

There was no easy possibility of an automatic transfer of the results to a statistical

package.

Moreover, there was no simple possibility to add the recognized cracks to the

original image. The recognized cracks can only be visualized by a plot as shown

in Figure 7 b). Another disadvantage of UTHSCSA Image Tool is that different

computers provide different results. The results given below were produced by a

Fujitsu Siemens Computer running Micrsoft Windows XP with NVIDIA GeForce

FX 5700 Ultra.

Figure 8 a) shows the medians and the interquartile ranges of the numbers of

detected cracks in the 54 image segments at the 15 time points. Only crack clus-

ters with size greater than 4 were used. Figure 8 a) shows that the new package

detects much more cracks than UTHSCSA Image Tool although the accuracy given

by interquartile ranges is often similar. One explanation for this different behavior

is that UTHSCSA Image Tool does not recognize pixel positions as connected which

are only connected diagonally. It recognizes two pixel positions only as connected

if either the x or the y component of the position differs by one. In crackrec both

components can differ by one to provide a connection. This would lead to more

crack clusters found by UTHSCSA Image Tool. But since only crack clusters were

16

0 5 10 15 20

0
10

0
20

0
30

0
40

0
50

0
60

0

Number of cracks

time

Image Tool
shadow.remove
medianfilter 51x51

0 5 10 15 20
0

50
10

0
15

0
20

0
25

0

Maximal length of cracks

time

Image Tool
shadow.remove
medianfilter 51x51

a) b)

0 5 10 15 20

6
8

10
12

14
16

Mean length of cracks

time

Image Tool
shadow.remove
medianfilter 51x51

0 5 10 15 20

0
20

00
40

00
60

00
80

00

Added length of cracks

time

Image Tool
shadow.remove
medianfilter 51x51

c) d)

Figure 8: medians and interquartile ranges for crack numbers a), maximum crack
lengths b), mean crack length c), and added crack lengths d) found by crackrec

and UTHSCSA Image Tool

used which have more than 4 pixels and the majority of crack clusters is small (see

also Figure 1), this leads to a significant smaller number of cracks found by UTHSCSA

Image Tool. It is debatable which approach is better. But also crackrec has the

17

problem that visually connected crack clusters are not connected. Hence it is better

to have a less restrictive definition of connection.

Another reason for smaller numbers detected by UTHSCSA Image Tool is cer-

tainly a smaller threshold value which is automatically determined. Therefore, the

zigzag crack in the upper part of Figure 1 a) is separated as seen in Figure 7 b).

Since it is more likely that crackrec recognizes two crack clusters as connected,

it is not surprising that the recognized maximum crack lengths found by crackrec

are larger than those found by UTHSCSA Image Tool. See Figure 8 b). Another

reason for the larger lengths found by crackrec is that it uses the length of the

crack path and not the difference between the start and end point while UTHSCSA

Image Tool uses the straight line given by the main axis of the circumscribing

ellipsis. The variability given by the interquartile ranges is similar at early points

of time.

The variation produced by crackrec is much smaller, in particular for early

points of time, if the mean crack length is used, see Figure 8 c). This Figure also

shows that the mean lengths do not differ very much between the two packages. This

holds although crack clusters which are connected with crackrec are not connected

with UTHSCSA Image Tool. Note that the scale ranges here only between 6 and 16.

However, it is not surprising that the added lengths given in Figure 8 d) are much

larger for crackrec since much more cracks are found. This is also the reason that

here the accuracy of crackrec is worse.

Figure 8 show that the difference between the two methods for removing the

shadow is much smaller than the difference between the two packages. The variabil-

ity between the image segments is very similar. Sometimes the method

shadow.remove shows less variation. However, it finds slightly less crack clusters so

18

that also the added crack lengths are a little bit smaller. Maybe this is the reason for

slightly smaller variation. Using the 201×201 median filter with bandwidth 50, leads

to results which are similar to those with the 51×51 median filter. However, the

variation is sometimes larger due to a less effective shadow elimination at borders.

0 5 10 15

0.0
0.5

1.0
1.5

Time

Or
ien

tat
ion

0 5 10 15

0.0
0.5

1.0
1.5

Time

Or
ien

tat
ion

Figure 9: orientations of the cracks calculated by least squares method (left hand
side) and by l1 method (right hand side)

5 Statistical analysis of crack behavior

It is not surprising that with increasing time the number of cracks and the mean

and maximum length of cracks increase. More specific hypotheses state that the

number of initiated cracks follows a Poisson distribution, that initiated cracks have

no specific orientation and that by-and-by the orientation becomes perpendicular

to the load. The last hypothesis is supported by Figure 9: It shows clearly that

the orientation of the cracks is close to zero, i.e. perpendicular to the load, from

Time 3 or 4 on, depending on the method used for calculating the mean orientation.

Here the least squares method and the l1 method for calculating simple orthogonal

regression were used. The regression analysis was based on the differences of the

19

start and end points of the crack paths given by cracks in the function crackrec.

A more specific question is how often the cracks kink. This can only be analyzed

using the crack paths. In particular the linear parts of the crack path can be

determined. In Figure 2 d), the linear parts of the crack path shown in Figure

2 c) were plotted. They were determined as in Alt and Guibas [26] in Section

4 of Chapter 3 on shape simplifications and approximations. The mean of the

orthogonal distances between the path points and the lines were used as distance

measure. If this distance is less than a given precision value, then the path points

can be approximated by one line segment. The minimum number of line segments

with distance less than the precision value is determined again with a shortest path

algorithm. If there are several solutions then the solution with minimum sum of

distances is used. Figure 2 d) was obtained by setting the precision value equal to

2. This lead to 10 linear parts of the zigzag crack.

6 Discussions

Our package originally was aimed to provide an automatic method to determine

covariates based on cracks which can be used for predicting the life time of the

material. This purpose is satisfied quite well although no special preprocessing

besides a shadow removement via the median filter or shadow.remove was used.

In particular, we were able to formulate the hypothesis that the time where the

crack orientation changes significantly to perpendicular direction to the load (see

Figure 9) is a predictor of the life time. However, further experiments must verify

this hypothesis. But analyzing more experiments can now be done easily with our

package.

20

But our package is not only able to analyze the orientation of whole cracks. It

can also analyze the linear parts of the cracks. Here it will be interesting to check

whether the linear parts are the result of the growth of one crack or of the union

of different cracks. This can be investigated by studying the temporal history of a

crack. This will be the next extension of the package.

Our package bases heavily on the assumption that only one path describes the

crack appropriately. For tree-like cracks as considered in Iyer and Sinha [10], the

package must be extended to find all branches of the tree.

Acknowledgment. We thank Prof. Dr. Angelika Brückner-Foit, Michael Besel,

and Frank Zeismann from the Institute for Materials Engineering of the University

of Kassel for providing us the series of images and for the discussions about crack

behavior. We are also grateful that Janine Keppler did all the manual labor for cal-

culating the confidence intervals for UTHSCSA Image Tool and that she supported

us in finding good threshold values.

References

[1] Nicholson, D. W., Ni, P., Ahn, Y.: Probabilistic theory for mixed mode fa-

tigue crack growth in brittle plazes with random cracks. Engineering Fracture

Mechanics 66, 305–320 (2000)

[2] Ihara, C., Tanaka, T.: A stochastic damage accumulation model for crack ini-

tiation in high-cycle fatigue. Fatigue Fract. Engng Mater. Struct. 23, 375–280

(2000)

21

[3] Meyer, S., Brückner-Foit, A., Möslang, A., Diegele, E.: Stochastic simulation of

fatigue damage accumulation in a martensitic steel. Mater. wiss. Werkstofftech.

33, 275–279 (2002)

[4] Brückner-Foit, A., Meyer, S., Möslang, A.: A stochastic simulation model for

microcracks in a martensitic steel. Comp. Mater. Sci. 26, 102–110 (2003)

[5] Heron, E. A., Walsh, C. D.: A continuous latent spatial model for crack initiation

in bone cement. Appl. Statist. 57, 25–42 (2008)

[6] Chiquet, J., Limnios, N., Eid, M.: Piecewise deterministic Markov processes

applied to fatigue crack growth modelling. J. Statist. Plann. Inference 139, 1657–

1667 (2009)

[7] Jain, A. K.: Fundamentals of Digital Image Processing. Prentice-Hall, Upper

Saddle River, NJ (1989)

[8] Burger, W., Burge, M.J.: Digital Image Processing: An Algorithmic Introduc-

tion Using Java. Springer, New York (2007)

[9] O’Gorman, L., Sammon, M. J., Seul, M.: Practical Algorithms for Image Anal-

ysis with CD-ROM. Cambridge University Press, Cambridge (2008)

[10] Iyer, S., Sinha, S. K.: A robust approach for automatic detection and segmen-

tation of cracks in underground pipeline images. Image and Vision Computing

23, 921–933 (2005)

[11] Fujita, Y., Mitani, Y., Hamamoto, Y.: A method for crack detection on a con-

crete structure. Proceedings - International Conference on Pattern Recognition

3, 901–904 (2006)

22

[12] Purcell, D.: Automatic crack detection. Sensor Review 3, 130–131 (1983)

[13] Cheu, Y. F.: Automatic crack detection with computer vision and pattern

recognition of magnetic particle indications. Materials Evaluation 42, 1506–1510,

1514 (1984)

[14] Buckley, M., Yang, J.: Regularised shortest-path extraction. Pattern Recogn.

Lett. 18, 621–629 (1997)

[15] Fletcher, D.I., Franklin, F.J., Kapoor, A.: Image analysis to reveal crack devel-

opment using a computer simulation of wear and rolling contact fatigue. Fatigue

Fract. Engng Mater. Struct. 26, 957–967 (2003)

[16] Appleton, B., Sun, C.: Circular shortest paths by branch and bound. Pattern

Recognition 36, 2513–2520 (2003)

[17] Russ, J. C.: The Image Processing Handbook. Taylor & Francis Ltd, London

(2006)

[18] R Development Core Team: R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria, (2009),

http://cran.r-project.org/

[19] Cormen, T.H.,Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algo-

rithms. MIT Press, Cambridge, (2001)

[20] Tsai, D. M.: A fast thresholding selection procedure for multimodal and uni-

modal histograms. Pattern Recogn. Lett. 16, 653–666 (1995)

23

[21] Ridler, T. W., Calvard. S.: Picture thresholding using an iterative selection

method. IEEE Transaction on Systems, Man, and Cybernetics SMC-8, 630–632

(1978)

[22] Otsu, N.: A threshold selection method from gray-level histograms. IEEE

Transaction on Systems, Man, and Cybernetics 9, 62–66 (1979)

[23] Rosin, P. L.: Unimodal thresholding. Pattern Recognition 34, 2083–2096 (2001)

[24] Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quanti-

tative performance evaluation. Journal of Electronic Imaging 13, 146–165 (2004)

[25] Medina-Carnicer, R., Madrid-Cuevas, F. J.: Unimodal thresholding for edge

detection. Pattern Recognition 41, 2337–2346 (2008)

[26] Alt, H., Guibas, L. J.: Discrete geometric shapes: matching, interpolation, and

approximation. In: Handbook of Computational Geometry, eds. J.-R. Sack, J.

Urrutia, Elsevier Science, 121–153 (1999)

Corresponding Author:

Christine Müller

University of Technology Dortmund, Faculty of Statistics

Vogelpothsweg 87

D-44221 Dortmund, Germany

E-mail: cmueller@statistik.tu-dortmund.de

Phone: +49 (0) 231 755 - 4238

Fax: +49 (0) 231 755 - 3454

Homepage: http://www.statistik.tu-dortmund.de/mueller1.html

24

