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Abstract

A package based on the free software R is presented which allows the
automatic detection of micro cracks and corresponding statistical analysis of
crack quantities. It uses a shortest path algorithm for detecting micro cracks in
situations where the cracks are surrounded by plastic deformations and where
a discrimination between cracks and plastic deformations is difficult. In a
first step, crack clusters are detected as connected components of pixels with

values below a given threshold value. Then the crack paths are determined by
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Dijkstra’s algorithm as longest shortest paths through the darkest parts of the
crack clusters. Linear parts of kinked paths can be identified with this. The
new method was applied to over 2000 images. Some statistical applications

and a comparison with another free image tool are given.

Keywords: Image analysis; Crack detection; Crack cluster; Crack path; Dijkstra’s

algorithm; Linear parts of a path

1 Introduction

The understanding of crack initiation and crack growth is very important for pre-
dicting the life time of products as wheels of trains or hip replacement. Macro cracks
origin from micro cracks which are only visible with a microscope. The initiation
and growth of micro cracks is a stochastic process. More and more approaches exist
for describing the initiation and growth of micro cracks by stochastic models. See
e.g. [1], [2], [3], [4], [5], [6]. These models must be validated by statistical methods.
Since these models are rather complicated models, a large amount of data on cracks
must be used. These data can be obtained from microscopic images from the surface
of assays under strain. Often hundreds of micro cracks are visible in such images,
at least at a later stage of the fatigue process.

To detect this lot of micro cracks, we developed a method based on a shortest
path algorithm. Edge detection methods (see e.g. [7], [8], [9]) cannot be used since
the cracks are surrounded by dark areas. The reason is that micro cracks origin
from plastic deformations of the material visible in darker areas. Indeed it is often

not easy to distinguish between a plastic deformation and a micro crack since micro



cracks are always surrounded by more or less large areas of plastic deformations (see
Figure 1 a)). Therefore we call the areas of micro cracks and surrounding plastic

deformations ” crack clusters”.
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Figure 1: a) original image at Time 18, b) detected crack paths

Since micro cracks origin from plastic deformations, it is no problem for a quanti-
tative analysis if the discrimination between micro cracks and plastic deformations is
not perfect. But real micro cracks differ from plastic deformations by darker colors.
Hence the aim is to follow mainly the darkest parts of a crack cluster.

According to the knowledge of the authors, existing crack analysis tools are only
able to highlight cracks and crack clusters (see e.g. [10] and [11]). Or they have
the ability to find crack clusters but cannot find the crack paths. Others are only
able to detect few cracks. See e.g. [12], [13], [14] [15] [16]. Like other free and

commercial tools, for example the free software UTHSCSA Image Tool! developed

http://ddsdx.uthscsa.edu/dig/itdesc.html, Department of Dental Diagnostic Science at
The University of Texas Health Science Center, San Antonio, Texas



by C. D. Wilcox, S. B. Dove, W. D. McDavid, and D. B. Greer describes the crack
clusters only by ellipses and rectangles which are easily obtained by calculating
the variances and covariances of the positions of the pixels inside the cluster. The
lengths of the main axes of the ellipses are used as the lengths of the cracks (see
also [15]). This is of course only a bad approximation of true crack paths, i.e. the
darkest parts of the crack cluster. Moreover cracks are kinked and curved so that
the true length of a crack is much longer then the distance between its start and
end point. It is also important for a detailed crack analysis to know what are the
kinks and curves of a crack.

Better approximations of the crack paths can be given by skeletonization and
thinning. See e.g. [17], [8], [9]. But simple skeletonization methods do not take
into account the gray levels in the clusters. Hence they do not result in the darkest
parts of the cluster. Certainly, it is possible to modify skeletonization so that it is
resulting in the darkest parts. But this modification would not be easy. Moreover,
every skeletonization method is very sensitive to small changes of the cluster and
provides usually tree-like paths for one cluster. For micro cracks however, it is very
important to obtain only one path for each cluster since the lengths of such main
paths are most relevant for the stability of the material. This is different to the
approach of Iyer and Sinha [10] who used a tree-like geometry for cracks.

The method proposed here bases on a shortest path algorithm. Shortest path
algorithms have many applications in image analysis as for object segmentation and
disparity estimation (see [16]). They were also applied for crack detection, but only
in the case of one crack as a circular crack of a borehole core [16] or one crack from
top to bottom as in [14]. Moreover, the crack paths in [14] and [16] follow structures

which are given already by lines. These conditions are not satisfied for micro cracks.



Micro crack paths must be determined inside the crack clusters and there is a large
amount of crack clusters. Our method uses Dijkstra’s shortest path algorithm to
determine the longest shortest path in the crack cluster which follows the darkest
parts of the crack cluster. Thereby it uses also gray areas so that detected cracks
are not interrupted by less dark parts. Since our method provides the whole crack
path, kinks and curves of the cracks can be analyzed. It is applicable in the presence
of hundreds of crack clusters.

The method is implemented in C and included in a R package. R provided by
R Development Core Team [18] is a free software with a huge amount of statistical
methods. It is meanwhile widespread in the statistical community. Hence cracks
detected inside R can be easily analyzed with many statistical methods provided by
R. Since R is also a programming language, additional tools for analyzing the cracks
can be easily implemented as well. Hence crack detection and statistical analysis
can be carried out with the same software.

Section 2 describes the new method. In Section 3, the method is applied to two
series of images each consisting of over 800 images. It is compared with the free
software UTHSCSA Image Tool in Section 4. In Section 5, some statistical analysis
of crack behavior is shown. In particular, there is shown how linear parts of a crack

path can be found.

2 Package crackrec

The R package crackrec, which can be downloaded from our homepage, contains six
functions, namely rbmp, shadow.remove, median.filter, threshold.msi, crackrec,

and crackplot, where rbmp and crackrec base on C and C++, respectively. The new



crack detection method is included in crackrec. The other functions are auxiliary
functions as the function rbmp which converts a 24-bit bmp file of an image into a

R matrix of pixel values ranging from 0 to 255.

c) d)

Figure 2: a) crack cluster for a zigzag crack, b) detected crack path with o = 0 = 3,
c) detected crack path with o = 1 = (3, d) linear parts of the zigzag crack

The function crackrec provides the cracks from a gray level image matrix. It
proceeds in two steps: In a first step, crack clusters are identified as connected
components of pixels with pixel values below a given threshold value. Such a crack
cluster is shown in Figure 2 a) for a zigzag crack visible in the upper part of Figure
1 a). To calculate the crack path, the pixels of a crack cluster are understood as

vertices. Vertices that are directly adjacent are connected with edges, so a graph



arises. Edges connecting vertices which coincide in one component have length
L = 1. All other edges have length L = /2 since they connect vertices in diagonal
direction. The longest shortest path through this graph is the identified crack path
for this cluster. It can be determined with Dijkstra’s shortest path algorithm in
O(n - n - logn) steps when the cluster has n vertices (see e.g. Cormen et al. [19],
Chapter 24). The output of crackrec consists of three components. One component
called crackclusters is a list containing K matrices with the pixel positions of the
pixels of the K crack clusters which were found. The matrices are of size 2 X ny,
k=1,..., K, where n, is the number of pixels in the k’th crack cluster. The second
component called crackpaths is a list containing K 2 X my matrices with pixel
positions of the pixels of each crack path. The third component called cracks is a
6 x K matrix where the six rows contain the lengths of the crack paths, the sizes of
the crack clusters, and the z and y coordinates of the start and end points of the
crack paths.

Simply using the length L of neighbor pixels leads to the curve given by triangles
in Figure 3 a) or to the detected crack path of Figure 2 b). These crack paths are
not following the darkest parts of the crack cluster and angles of kinked cracks are
cut. Note that several longest shortest paths exist in Figure 3 for this situation
since the cluster is a disk and every diameter of the disk and additional paths like
that given by triangles in Figure 3 a) are longest shortest paths through the disk.
To force the path to the darkest parts of the cluster, the pixel values greyValue,
and greyValue, of the two neighbor pixels v and v were used with some weights
additionally to the length L. Thereby the weights o and 8 are applied to the sum

of these pixel values and to the absolute value of their difference, respectively. l.e.
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Figure 3: test image for the weights: a) the path given by a = 0, § = 0 is marked
with triangles, that given by @ = 1, 8 = 1 is marked by circles, b) the path given
by a =1, f = 0 is marked by triangles, that given by a = 0, = 1 is marked with
circles

the following distance was used

L (1+ ax* (greyValue, + greyValue,) + 8 * |greyValue, — greyValue,|)

This distance was used to determine the shortest paths between points inside the
crack cluster. However, the longest shortest path was calculated by using simply
the optical length, i.e. with « = 0 = [, to obtain the optical longest paths. The
test image in Figure 3 shows the effect of the choices « = 0 = 3, a = 0,8 = 1,
a=1,=0, a =1= f for the determination of shortest paths. The best result
was obtained with @ =1 = 8 so we worked with this. But the choice a =1, =10
is also quite good so that it is most important to have high weight on the sum of

the pixel values. Figure 2 ¢) shows the result for a = 1 =  for the zigzag crack.



The detected crack path now follows all angles and is not cutting them.

The recognized crack paths can be plotted with the function crackplot, either
in the original image or separately. If they are plotted in the original image, the
crack paths are plotted in red. For an improved identification of the start and end
points of the cracks, they are connected with a yellow line. These are the default
colors, but other colors can be chosen. Figure 1 b) shows the detected crack paths
for the image in Figure 1 a), where 448 cracks with a size greater than 4 pixels were

found.

3 Application of the method

We applied the new method to two series of images providing the surface of two
small steel assays under strain. Although the surface of interest has only a size

of 7x10 mm?

, it was too large to cover it with one microscopic photo. Hence
only microscopic photos of segments of the surface could be obtained. The photos
were taken at different points of time ¢, where t means that the photos were made
after ¢ - 1000 load cycles. For one assay, Assay 31, 15 different points of time were
considered, where photos of 54 segments were available for each point of time. For
the other assay, Assay 10, 29 different points of time were used and photos of 45
segments were obtained at each point of time. Each image segment has 696x512
pixels. The segments have different quality. Some have shadows at the border
and some are blurred. Since the segments overlap, they could be joined leading to
images of the whole surface with 3337x4165 pixels for Assay 31 and images with

2659x4221 pixels for Assay 10. These images were compressed for a faster analysis

to 1669x2083 and 1330x2111 images.
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Figure 4: different threshold methods applied on the blurred image at ¢ = 6 given
in a): b) method of Otsu (threshold=130), ¢) method of Ridler/Calvard (thresh-
0ld=128), d) method of steepest increase with bandwith 30 (threshold=105)
Crucial for the recognition method is a good threshold value. This should also
be determined automatically. We tried several methods and found that a method

proposed by Tsai [20] is most appropriate. Thereby the threshold is determined

as the steepest increase of a smoothed histogram of the pixel values where the
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histogram is smoothed with the Gaussian kernel density estimator. The problem is
that the histogram of the pixel values and thus also the density estimator is almost
always unimodal so that classical methods like the method of Ridler and Calvard
[21] and Otsu [22] are overestimating the threshold. The same holds if simply the
mean gray level or more specialized threshold methods for unimodal and multimodal
distributions as described in [23], [24], [25] are used. The method of steepest increase
of the kernel density estimator is rather flexible since different bandwidths of the
kernel density estimator can be used. The higher the bandwidth is the smoother
the estimated density is. A smooth density has steepest increase at a point much
smaller than the mode of the distribution. Hence by using a rather high bandwidth,
we obtained the best result. This method is given by the function threshold.msi.
Figure 4 provides a comparison of different threshold methods. A blurred image was
used there, but similar results hold for the other images.

The best bandwidth depends on the method which is used for removing shadow.
For removing the shadow we used the method based on the median filter (see e.g.
[8]). We investigated a 51x51 and 201x201 window for the median filter. Figure 5
shows the results of three bandwidths for an image where the 51x51 median filter
was applied. The best bandwidth is here 30. Note thereby that a small bandwidth,
which provides the best approximation to the histogram of gray levels, leads to a
much too high threshold value as seen in Figure 5 a) and b). A too large bandwidth
like 40 is also bad since then the threshold is so small that cracks are separated as
the zigzag crack in the upper part of Figure 5 d). Other images behaves similar
so that we used for the 51x51 median filter always the bandwidth 30. For the
201x201 median filter, the bandwidth 50 appeared as appropriate bandwidth. This

was applied in Figure 1 b).

11
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Figure 5: effect of different bandwidths on the image in Figure 1 a): a) histogram
with different kernel density estimators, b) bandwidth = 4 (threshold=173), c¢) band-
width = 30 (threshold=143), d) bandwidth = 40 (threshold=130)

That a method for removing shadow is necessary shows Figure 6 a). There, the
shadow at the left border provides a very large crack cluster in which a very large

crack is found. Figure 6 b) shows the result of crackrec after applying the 51x51

median filter. For both images, threshold.msi was used with bandwidth 30 leading

12



to a threshold of 146 for the unfiltered image and a threshold of 188 for the filtered
image. We also tested other bandwidths for the unfiltered image but the result was

always unsatisfying.

1 R 1

Figure 6: effect of filtering: a) without median filter, b) with median filter

Since the shadow only appears at the border of the image segments, we also
developed a special method shadow.remove for removing the shadow at the border.
This method is based on the mean gray level Gz of a border strip with a width of 40
pixels and the mean G of all gray levels in the inner part. If the difference between
Gp and G is greater than 10, then shadow.remove adds an exponential decreasing

function f with maximum at 0 of the form

f(x) = a exp (—35;/) + % exp (—%)

to the pixel values of the border. The quantity W is the width of the image in
horizontal or vertical direction, respectively. The value a is given by a = 40(Gy —

Gp)/B, where 3 is chosen such that the mean of the gray levels at the border strip

13



becomes G;. A result using this method, where the threshold is the minimum of
140 and 4/5 of the mean of the gray levels, is shown in Figure 7 a). In this case, it is
very similar to that in Figure 1 b) using the 201x201 median filter. But in Section
4 it is shown that there are some differences with respect to crack characteristics.
However, this method can only be used for the image segments but not for the whole
image consisting of the union of the image segments since the shadows are not only
appearing at the border in this case. For the whole image, only the median filter
is applicable. Here a median filter with a large window as a 201x201 window is

preferable since otherwise cracks passing over several image segments are separated.
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Figure 7: detected cracks for the image given in Figure 1 a): a) using shadow.remove
with min(140,4/5*mean(graylevel)), b) using UTHSCSA Image Tool

The computing time which is needed to calculate the detected cracks depends
on the number of crack clusters and the size of the crack clusters. Hence the larger
the threshold is, the more time is needed. The computing time is exceptionally high

for Figure 6 a), where the shadow provides a very large crack cluster. However, the
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Image Size Band- | Threshold | Number of Maximum Computing

width crack crack length time

clusters in pixel in sec
Fig. 1a),t=0 696 <512 30 203 25 28,49 <0,1
Fig. 1 a),t=0 696 <512 40 193 22 24,07 0,1
Fig. 1 a), t=5 696 <512 30 179 748 89,18 14
Fig. 1 a), t=5 696 <512 40 169 543 70,70 0,8
Fig. 1 a),t =18 | 696x512 30 143 1091 299,29 14,8
Fig. 1a),t =18 | 696x512 40 130 970 211,89 6,1
Fig. 6 a),t =0 696 <512 30 146 732 842,47 4060,9
Fig. 6 a), t = 696 <512 40 131 549 727,49 1966,5
Fig. 6 b),t=0 696 <512 30 188 29 53,63 0,3
Fig. 6 b),t=0 696 <512 40 178 20 48,38 0,3
Assay 31,t =0 | 1669x2083 50 144 388 113,43 0,9
Assay 31,t =5 | 1669x2083 50 139 4842 94,25 1,5
Assay 31, t =18 | 1669x2083 50 115 12449 262,55 16,6
Assay 10, t =0 | 1330x2111 50 144 432 72,57 0,6
Assay 10, t =10 | 1330x2111 50 139 3798 84,01 0,7
Assay 10, t = 44 | 1330x2111 50 114 7217 325,84 3,7

Table 1: computing times of user and system for different images

computation is rather fast in all other cases as Table 1 shows. Even the 1669x2083
image given as the union of 54 image segments and the 1330x2111 image given as
the union of 45 image segments can be calculated in a rather short time at late
points of time ¢ (¢t = ¢ x 1000 load cycles) where many cracks exists. The computing
times in Table 1 were obtained using a 51x51 median filter for the image segments

and a 101x101 median filter for the compressed union of image segments.

4 Comparison with UTHSCSA Image Tool

To compare the new package with another free package, namely the UTHSCSA Image
Tool, the microscopic photos at 15 time points of Assay 31 described in Section
3 were used. Although some of the 54 image segments are blurred, all of them

were used. The comparison was based on the numbers of cracks, the maximum
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crack lengths, the mean crack lengths, and the added crack lengths. Hence 4x54
quantities for each of the 15 points of time were calculated. While our package with
standard R commands provides these quantities automatically, a lot of manual labor
was necessary to obtain these quantities for UTHSCSA Image Tool. UTHSCSA Image
Tool produces for each image only a text file with some quantities as number of
cracks and lengths of the main axes of the ellipses circumscribing the cracks. These
results for the 54 image sections had to be combined by hand for each point of time.
There was no easy possibility of an automatic transfer of the results to a statistical
package.

Moreover, there was no simple possibility to add the recognized cracks to the
original image. The recognized cracks can only be visualized by a plot as shown
in Figure 7 b). Another disadvantage of UTHSCSA Image Tool is that different
computers provide different results. The results given below were produced by a
Fujitsu Siemens Computer running Micrsoft Windows XP with NVIDIA GeForce
FX 5700 Ultra.

Figure 8 a) shows the medians and the interquartile ranges of the numbers of
detected cracks in the 54 image segments at the 15 time points. Only crack clus-
ters with size greater than 4 were used. Figure 8 a) shows that the new package
detects much more cracks than UTHSCSA Image Tool although the accuracy given
by interquartile ranges is often similar. One explanation for this different behavior
is that UTHSCSA Image Tool does not recognize pixel positions as connected which
are only connected diagonally. It recognizes two pixel positions only as connected
if either the x or the y component of the position differs by one. In crackrec both
components can differ by one to provide a connection. This would lead to more

crack clusters found by UTHSCSA Image Tool. But since only crack clusters were
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Figure 8: medians and interquartile ranges for crack numbers a), maximum crack
lengths b), mean crack length c), and added crack lengths d) found by crackrec
and UTHSCSA Image Tool

used which have more than 4 pixels and the majority of crack clusters is small (see

also Figure 1), this leads to a significant smaller number of cracks found by UTHSCSA

Image Tool. It is debatable which approach is better. But also crackrec has the

17



problem that visually connected crack clusters are not connected. Hence it is better
to have a less restrictive definition of connection.

Another reason for smaller numbers detected by UTHSCSA Image Tool is cer-
tainly a smaller threshold value which is automatically determined. Therefore, the
zigzag crack in the upper part of Figure 1 a) is separated as seen in Figure 7 b).

Since it is more likely that crackrec recognizes two crack clusters as connected,
it is not surprising that the recognized maximum crack lengths found by crackrec
are larger than those found by UTHSCSA Image Tool. See Figure 8 b). Another
reason for the larger lengths found by crackrec is that it uses the length of the
crack path and not the difference between the start and end point while UTHSCSA
Image Tool uses the straight line given by the main axis of the circumscribing
ellipsis. The variability given by the interquartile ranges is similar at early points
of time.

The variation produced by crackrec is much smaller, in particular for early
points of time, if the mean crack length is used, see Figure 8 c). This Figure also
shows that the mean lengths do not differ very much between the two packages. This
holds although crack clusters which are connected with crackrec are not connected
with UTHSCSA Image Tool. Note that the scale ranges here only between 6 and 16.
However, it is not surprising that the added lengths given in Figure 8 d) are much
larger for crackrec since much more cracks are found. This is also the reason that
here the accuracy of crackrec is worse.

Figure 8 show that the difference between the two methods for removing the
shadow is much smaller than the difference between the two packages. The variabil-
ity between the image segments is very similar. Sometimes the method

shadow.remove shows less variation. However, it finds slightly less crack clusters so

18



that also the added crack lengths are a little bit smaller. Maybe this is the reason for
slightly smaller variation. Using the 201x201 median filter with bandwidth 50, leads
to results which are similar to those with the 51x51 median filter. However, the

variation is sometimes larger due to a less effective shadow elimination at borders.
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Figure 9: orientations of the cracks calculated by least squares method (left hand

side) and by 1; method (right hand side)

5 Statistical analysis of crack behavior

It is not surprising that with increasing time the number of cracks and the mean
and maximum length of cracks increase. More specific hypotheses state that the
number of initiated cracks follows a Poisson distribution, that initiated cracks have
no specific orientation and that by-and-by the orientation becomes perpendicular
to the load. The last hypothesis is supported by Figure 9: It shows clearly that
the orientation of the cracks is close to zero, i.e. perpendicular to the load, from
Time 3 or 4 on, depending on the method used for calculating the mean orientation.
Here the least squares method and the 1; method for calculating simple orthogonal

regression were used. The regression analysis was based on the differences of the
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start and end points of the crack paths given by cracks in the function crackrec.

A more specific question is how often the cracks kink. This can only be analyzed
using the crack paths. In particular the linear parts of the crack path can be
determined. In Figure 2 d), the linear parts of the crack path shown in Figure
2 ¢) were plotted. They were determined as in Alt and Guibas [26] in Section
4 of Chapter 3 on shape simplifications and approximations. The mean of the
orthogonal distances between the path points and the lines were used as distance
measure. If this distance is less than a given precision value, then the path points
can be approximated by one line segment. The minimum number of line segments
with distance less than the precision value is determined again with a shortest path
algorithm. If there are several solutions then the solution with minimum sum of
distances is used. Figure 2 d) was obtained by setting the precision value equal to

2. This lead to 10 linear parts of the zigzag crack.

6 Discussions

Our package originally was aimed to provide an automatic method to determine
covariates based on cracks which can be used for predicting the life time of the
material. This purpose is satisfied quite well although no special preprocessing
besides a shadow removement via the median filter or shadow.remove was used.
In particular, we were able to formulate the hypothesis that the time where the
crack orientation changes significantly to perpendicular direction to the load (see
Figure 9) is a predictor of the life time. However, further experiments must verify
this hypothesis. But analyzing more experiments can now be done easily with our

package.
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But our package is not only able to analyze the orientation of whole cracks. It
can also analyze the linear parts of the cracks. Here it will be interesting to check
whether the linear parts are the result of the growth of one crack or of the union
of different cracks. This can be investigated by studying the temporal history of a
crack. This will be the next extension of the package.

Our package bases heavily on the assumption that only one path describes the
crack appropriately. For tree-like cracks as considered in Iyer and Sinha [10], the

package must be extended to find all branches of the tree.
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