On outlier robust corner-preserving methods for reconstructing

noisy images®

by Martin Hillebrand® and Christine H. Miiller*

January 21, 2005

Abstract

Removing a high amount of noise and preserving most structure are desireable properties of an
image smoother. Unfortunately, they seem to be contradictive: usually one can only improve
one property at the cost of the other one. In this article we show that a version of the M-kernel
smoother introduced by Chu et al. (1998) is, asymptotically, both outlier robust and corner-
preserving. Furthermore, we introduce an improved method, the TM estimator, which is even
able to remove outliers in the finite case while still having strong corner-preserving properties.
In a simulation example it outperforms other corner-preserving smoothers. A software package

containing both smoothers can be downloaded from the internet.

Keywords: nonparametric regression, M-estimation, corner preserving M-kernel estimation, ro-

bustness, consistency, outliers

AMS Subject classification: 62G07, 62G35

*Research supported by the Friedrich Ebert Foundation and by grant Mu 1031/4-1/2 of the Deutsche Forschungs-
gemeinschaft.

tZentrum Mathematik, TU Miinchen, Boltzmannstr. 3, 85747 Garching, Germany, mhi@ma.tum.de

tFakultdt V - Institut fiir Mathematik, Universitit Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany,
mueller@math.uni-oldenburg.de



Robust Corner-Preserving Image Smoothing 2

1 Introduction

The main subject of this paper is the reconstruction of a noisy image. Since images typically have
sharp edges and corners, a reconstruction method should preserve them. The classical smoothing
methods such as the mean kernel estimator are smoothing the edges and corners. Hence they are
not adequate. Recently, several edge- and corner-preserving smoothing methods were proposed.
Some of them are methods based on wavelets and related methods (see e.g. Donoho et al. (1995),
Candes and Donoho (1999), Donoho (1999) and the references therein). Other methods are based
on special local estimators where the reconstructed pixel value is calculated by the pixel values of
pixel positions in a neighborhood (window) around its pixel position. Usually a kernel function
provides the neighborhood and eventually weights for the pixel values in the neighborhood so that
these estimators are called kernel estimators. Chu et al. (1998) proposed besides other methods
the use of an M-kernel estimator based on a redescending objective function, while Polzehl and

Spokoiny (2000, 2003) proposed methods based on an adaptive choice of the kernel function.

But none of these methods can eliminate isolated outliers, i.e. none of them is outlier robust.
One can even say that the better the reconstruction of corners with small angles is the worse the
outlier robustness is. The reason is that the methods with good corner preserving properties are
also preserving the isolated outliers. It seems that there is a contradiction between the corner

preserving property and outlier robustness.

There are many reconstruction methods which are outlier robust. The most prominent ones in
image analysis are kernel estimators based on outlier robust estimators such as the median smoother
studied in Koch (1996) and the estimators based on least trimmed squares estimators studied by
Meer et al. (1990, 1991), Rousseeuw and Van Aelst (1999), Miiller (1999, 2002a,b). Often a kernel
estimator based on a robust estimator is edge preserving since a good robust estimator follows
the majority of the data. But none of these estimators is corner preserving since at a corner the

majority of the pixel values within a window are different from the values inside the corner.

Redescending M-estimators are known to be outlier robust since their objective function is bounded
(see e.g. Huber 1981, Hampel et al. 1986). However, the estimator proposed by Chu et al. (1998),
which is a kernel estimator based on a redescending M-estimator, is not outlier robust due to the

special choice of the starting point for finding a local minimum.

Nevertheless, in this paper we show that the redescending M-kernel estimator of Chu et al. (1998)
can possess both properties, robustness and preservation of corners, at least asymptotically. Since

this is not the case in the finite sample case, a modification is proposed which satisfies both prop-
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erties for finite samples.

In Section 2 a description of edges and corners is given by using some notions from differential
geometry and in Section 3 the estimator of Chu et. al. is defined. The asymptotic properties
concerning robustness and corner preserving of this estimator are considered in Sections 4 and 5.
In the asymptotic case, a necessary condition for corner preserving is the consistency at corners.
In Hillebrand and Miiller (2003), the consistency at jump points was studied for the estimator of
Chu et al. in the one-dimensional case. This result is now transferred to the two-dimensional case
in Section 4 by using the notions from differential geometry given in Section 2. The consistency is
shown for corners with arbitrary small angles and is shown for the case that the scale parameter
of the objective function is fixed and for the case that the scale parameter converges to zero with

growing sample size.

In Hillebrand and Miiller (2003), it was shown that the consistency depends strongly on the form
of the error distribution if the scale parameter converges to zero. As soon as the error distribution
is not strictly unimodal, the consistency becomes an inconsistency. This makes the estimator
nonrobust against small changes of the error distribution. To give a rigorous proof of this fact, we
transfer Hampels (1971) large sample robustness to nonparametric regression in Section 5. We show
that the estimator of Chu et al. is not robust in this sense if the scale parameter is converging to
zero. However, if the scale parameter is fixed, then large sample robustness in the sense of Hampel

is proved. This means that asymptotically robustness and corner preserving is not a contradiction.

However, this is a contradiction in the finite case. In Section 6 it is shown by an example that
the method of Chu et al. is not corner preserving and outlier robust simultaneously in the finite
sample case. This example shows that its corner preserving property and outlier robustness depend
on the scale parameter of the objective function. The smaller the scale parameter is chosen the
better the corner preserving property is. But then the outlier robustness is bad. Conversely, the
larger the scale parameter is the better the outlier robustness is. But then corners are not preserved
completely. Since the estimator of Chu et al. is not simultaneously corner preserving and outlier
robust in the finite sample case, we propose in Section 6 the TM- estimator, a trimmed version
of the estimator of Chu et al. In a simulation study we compare this estimator with the original
estimator of Chu et al. We also compare the TM-estimator with the AWS method of Polzehl and
Spokoiny (2000) which appeared in a simulation study of Polzehl and Spokoiny (2000) as the best
corner preserving method within several other methods. It turns out that the TM-estimator is the
only one which preserves corners and is outlier robust. We also prove a finite sample robustness

property of it.

All proofs are given in Section 7.
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2 Description of images with edges and corners

An image is given by pixel values m(x;;) (typically in a bounded interval R of nonnegative numbers)
at pixel positions z;j, 4,7 = 1,...,n, for which can be assumed w.lo.g. z;; € [0,1]%. The function
m can be interpreted as regression function. But since images have usually edges and corners, this

regression function is not everywhere continuous. It has several discontinuities.

While the set of discontinuities of a one-dimensional almost everywhere continuous regression func-
tion is usually the union of “jumps”, the two-dimensional case is much more complicated: here the
set of discontinuities of an a.e. continuous regression function is—apart from functions without
a visual structure—a one-dimensional subset of the image that can have different shapes like the

border lines in the examples in Fig. 1.

x1

X2

x1

4

Figure 1: Two-dimensional discontinuities

To obtain a formal characterization of the discontinuities, let us have a brief excursus to Differential

Geometry (see, for example, Shikin (1995)):
Let I :=[a,b] C IR be a compact interval and let x = (;;) : I — IR? be continuous. Then the set

vi={xz(t): t €I}
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is called a parametrically defined (parametrized) plane curve. The curve 7 is called regular
if the derivatives of x!(¢) and 22(t) exists. If the derivatives satisfy ||2/(t)|| = 1 for all ¢ € I, then
the curve has a natural parametrization. A curve is named a simple, or Jordan curve with
respect to given parametrization x = z(t), t € I, if x(¢) is injective on [a, b] or, if the curve is
closed (i.e. x(a) = x(b)), on (a,b).

Up to this point, we could use standard definitions. But for our very special topic of interest,
we have to create some special structures. For geometric singularities (points where the natural

parametrization is not differentiable) we can define the following:

Definition 1 If v is a simple curve with a natural parametrization on I\ {to} for some ty € I
and the limits lim; ~, 2'(t) and limp 4, 2'(t) exist, then the pair of asymptotic tangents of ~

in g = x(to) is defined as

Ti(y,20) :={z € R*: 2 = xg + \ - th/r? Z'(t), Xe R}
0
and

Ty (y,w0) ;== {z € R* : 2 = 29 + \ - tli\r? 2'(t), € R}
0

Figure 2: Asymptotic tangents

Notice that, if 2/(¢) is Lipschitz continuous on I\ {tp} then the asymtotic tangents exist by the
Cauchy criterion. In Figure 2, the asymptotic tangents are sketched by dotted lines.

If 2 is a regular point then both asymptotic tangents are similar and equal to the tangent in that
point. But if we have a cuspidal point (see the fourth image of Fig. 1) then the asymptotic tangents
are also equal. Hence, “real” corners in a visual sense, as those in Image 2 and 3 of Fig. 1, are

characterized by the fact that they have two different asymptotic tangents.
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Definition 2 Let v be a simple curve having a parametrization
x = z(t), tel

which is natural and with a bounded second derivative 2" (t) in some open interval I' C I except at
a point xog = x(tg),to € I'. Then xq is called a corner point if the two asymptotic tangents of xg

are different.
It is apparent that the corner point is well-defined, i.e. that the pair of asymptotic tangents exists.

Definition 3 An edge curve is a closed simple curve with a natural parametrization and a

bounded second derivative except at a finite number of corner points.

In the following, we will consider images given by m(z) := p(z) + dlip(z) where m : [0,1]> — R
is continuous, d > 0 and D is a nonempty closed set with a boundary 0D which is the disjoint
union of a finite number of edge curves. Observe that a relaxation of these assumptions, allowing

d = d(z) to be smooth in x and bounded downwards by some constant dy > 0, is possible.

3 The estimator and assumptions

Suppose that we observe a noisy image given by

where ¢;; are errors. To estimate the original image m(x) on the basis of the observations Y =

(Y35)ij=1,....n, We use the estimator

mp () := My (V) := argmiﬂr%{]y —Yiyjol : y is element of N, (z)}
ye

)

where

NMu(z) = {y e R:yislocal minimum of — H, »(y)
with y <Y, it — H’I/’L,x(}/; ) >0
and y > Yy, if — H;’L,z(Y;Ojo) < 0}

070
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and .
Hnaly) = — > K, (@ = mij) Ly, (y — Vi),
ij=1

(40, Jo) = argming jyeq,.. 32 |2 — zi5]l2 (if ab = (aF +2F,)/2, for k =1 or k = 2, then define
io := i) and Kp,, (z) := 1/h2 K (x/hy), Ly, (y) :== 1/gynLy(x/gy) with kernel functions K : R*? — IR
and L : IR — IR and bandwidths h,,, g, € (0,00). Since it is easier to handle zeros of a function
instead of minima, we notice that my,(z) is element of {y : Hj, .(y) = 0}. The estimator m,(x)
can be calculated by Newton Raphson method starting at the center of the window (ig,jo) and
searching for the next minimum of H, ,(y) in descending direction. Existence and uniqueness of

this estimator follows as in the one-dimensional case (see Hillebrand and Miiller 2003).

The bandwidths g,, can be also interpreted as scale parameter since the kernel function is the score
function of M-estimators, usually denoted by p. Consistency and asymptotic robustness are studied

for two situations: for scale parameter g, converging to zero and for fixed scale parameter g, = 1.

To prove consistency and robustness for scale parameter converging to zero, we make the following

assumptions.

Al The regression errors ¢;; are independent identically distributed with a density function f sup-
ported on a bounded or unbounded interval Z C IR, and the Lipschitz continuous derivative
/' has the property f'(y) # 0 for all y € 7\ {0} (i.e. f is strongly unimodal in 0).

A2 As Assumption A1, but with the additional assumption that f is supported on a bounded
interval (a1, a2) and ag — a; < d (where d is the jump height, see B2). This rather strong

assumption is only needed for proving the consistency at the discontinuities.

Further assumptions are

B1 The design points are x;; := ( = = ,j=1,...,n.

i—1/2 j71/2) 7

B2 The regression function is m(z) := u(x) + dlp(x), where m(zx) is defined on [0,1]? and u(z)
is locally Lipschitz continuous on (0,1)?, d > 0, and D is a nonempty closed set with a

boundary 0D which is the disjoint union of a finite number of edge curves.
B3 K(u) >0 on (0,1)%, 0 else, K (u) is Lipschitz continuous, K(0) > 0 and [ K (u)du = 1.

B4 L(v) is a nonnegative function, has a Lipschitz continuous derivative, L(0) # 0, [ L(v)dv = 1,
J L(v)|v|dv < o0 and [ L'(v)|v]dv < oc.
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B5 With n — co we have g, — 0, h,, — 0, n"'h;?2 — 0 and n"'h; g2 — 0.

For the case that the scale parameter is fixed, we replace the assumptions A0, A1, A2, B4 and B5

by the following assumptions:

A1’ The regression errors ¢;; are independently identically distributed with density function f
which is symmetric on [—b,b] and has only one local and global maximum on its support in

0 (i.e. fis (weakly) unimodal).

A2’ As Assumption A1’°, but with the additional assumption that the density function f is sup-
ported on the interval (—a,a) and that 2a 4+ 2b < d.

B4’ L has two Lipschitz continuous derivatives, is nonnegative, symmetric, supported by (—b,b)
and strongly unimodal on its support: L’ is positive on (—b,0). Finally, L” has a finite

number of zeros on (—b,b).

857 n = 1 and’ Wlth n — o0, hn — 0 al’ld nilhgl — 0.

4 Consistency

The following consistency results hold for both cases that the scale parameter g, is converging to
zero and that the scale parameter g, is fixed by g, = 1. The two cases are reflected by Assumptions
Al, A2, B4 and B5 and Assumptions A1’, A2’, B4’ and B5’, respectively.

Consistency at continuity points of the image can be shown under the weak assumptions A1l or A1’

for the errors.

Theorem 1 Let zg € (0,1)2\ 9D and let Assumptions Al, B1 to B5 or Assumptions A1’, B1,
B2, B3, B4’, B5" hold. Then, for all € > 0,

lim P (|my,(xg) — m(zo)| >¢) =0.

n—~oo

For the discontinuity points xg € 9D the more stronger Assumptions .42 and A2’, respectively, for
the errors are needed. Moreover, we assume that the discontinuity point xg is a gridpoint for some

n € IN. Then there exists a subsequence (n;);cpv such that zg is a grid point for all n; € IN.
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Theorem 2 Let xg € 0D be a gridpoint for some n € IN and let Assumptions A2, B1 to B5 or
Assumptions A2°, B1, B2, B3, B4’, B5’ hold. Then, for all € > 0,

lim P (|mpy,(zo) — m(zo)| > €) = 0.

l—o0

For the proof of the theorems we need the following lemmas. Essential for the proof of Theorem
2 is in particular Lemma 1. It claims that the sum of the kernel weights of the pixel positions
in D converges for g € dD. For this purpose let Uy, (70) := {x € [0,1]? : [|[z0 — Z||co < hn} be
the window around x¢ with respect to h, and G, (x¢) := D N Uy, (7). If 29 € (0,1) \ 9D then
Gn(z0) = 0 or Gp(wg) = Uy, (mg) for sufficiently large n. If xg € 0D then 0 # G, (z0) S Un, (o)
for all n € IN (see Fig. 3).

Lemma 1 Let zg € D and let Assumptions B1 to B3, BS or Assumptions B1, B2, B3, B5’ hold.
Then there is G(zg) C [~1,1]* such that

1
5 Y KnGo-wy)= [ K@duto()
Tij n 1'0)
and 1 > fG(zo) K(u)du > 0.
Un,, (o)

Figure 3: G, (xo) C Uy, (7o)
We define the set of indexes of the window which contains all positive kernel weights by
Jnwo = {(0,7) € {1,....,n}*  ||[wo — 2j]|oo < b} (1)

and the set of indexes in Jj, 5, corresponding to D by

17 (x0) == {(i,§) € {1,...,n}* : 2ij € Gnlw0)} -
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Observe that, for all (,7) € Jp 4, \ IC" (z), we have m(xi;) = p(xi;), and for all (i,7) € IG (z0),
we have m(zi;) = p(wi;) + d.

Then we have the following corollary.

Corollary 1

1
s Z Ky, (xo — xij) =1 — K(u)du + o(1).
(i,j)EJn,aco\ISn (370) G(xO)

Note that the equalities in Lemma 1 and Corollary 1 hold also for g € (0,1)2\dD. If zg € D\ 9D
then fG (u)du = 1 and if 2o € (0,1)?\ D then fG (u)du = 0.

Define

Ugy 1= K (u)du
G(zo)

and, for the case that the scale parameter is converging to zero,

Fave () = Vao f () + (1 — ) f(y +d)  for vy, € (0,1),
o ' () for vy, =1 or vy, = 0.

Lemma 2 Let 2¢ € (0,1)% and let Assumptions A0, B1 to B5 hold. Then

sup |[EH}, ., (4) = 4,5, (v — m(x0))| = o(1).
yelR

For the case that the scale parameter is fixed by g, = 1, define

() = 4 VW) (A =veo)hy +d) - for vy, € (0,1),
oo Y h(y) for vy, =1 or vy, =0,

where h(y) := [ L(y P(du).

Lemma 3 Let 2o € (0,1)2 and let Assumptions A0°, B1, B2, B3, B4’, B5 hold. Then

sup EH’I/’L :)30( ) - hél,z/zo (y - m(xo)) = 0(1)
yelR
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Lemma 4 Let zg € (0,1)? and let Assumptions A0, B1 to B5 or Assumptions A0°, B1, B2, B3,
B4’, B5 hold. Then

lim P <sup |H,, .,(y) — EH}, ., (y)] < e) =1 foralle>0.

n—oe \yeR

5 Large sample robustness

As robustness criterium we use the large sample robustness introduced by Hamel (1971) (see also
Huber 1981) and transfer it from the location case to nonparametric regression. For that we use

as metric on P, the space of the probability measures on IR, the Levy metric
dr,(P,Q):=min{e : F(y —¢) —e < G(y) < F(y+¢)+e forall y € R},

where F' and G are the distribution functions of the probability measures P and @, respectively.
The e-Levy neighborhood of P is defined as

ULe(P)={Q € P :dr(P,Q) < e}

Let m:J C IR? — I C IR, x — m(x), be a regression function, and let Y := (Yij)ij=1,...,n where Yj;
are observations at z;; € J. For the estimator My, ; : IR"*"™ — IR, let (P)m"»z(y) be the distribution

of My, »(Y) if P is the distribution of the iid residuals Y;; — m(z4;).

Definition 4 The estimator My, »(Y) is called robust for large samples at P in x if, for all
e*>0,e>0and N € IN exist such that

dr ((P)mw(y)’ (Q)mn,xm) <& forall Q€ Up(P) andn > N.

Note that the estimator 7, -(Y") of Chu et al. is abbreviated by my ().

Hillebrand and Miiller (2003) showed for the one-dimensional case that the consistency of the
estimator my,(z) depends strongly on the assumptions for the errors if the scale parameter is
converging to zero. They showed in particular that slight changes of the Assumption A1l can lead
to inconsistency: only a saddle point in the distribution function is enough to make the estimator

inconsistent. The following theorem gives the reason for such behavior.
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Theorem 3 Let Assumptions B1 to B5 hold and let P be a distribution fulfilling A1. Let further

xo € (0,1)2. Then my(xg) is not robust at P in xq for large samples.
However, large sample robustness holds if the scale parameter is fixed, by g, = 1 for example.

Theorem 4 Let Assumptions B1, B2, B3, B4’, B5’ hold and let P be a distribution fulfilling A1’.
Let zg € (0,1)2\ dD. Then m,(xq) is pointwise robust for large samples at P in xg.

If P fulfills A2 and x( is a gridpoint for some n € IN (see Section 4), then the estimator is even
robust at g € 9D. The proof is similar to the one of Theorem 4, with A/, . (y) instead of h'(y).

6 Robustness and corner preservation for finite samples

The foregoing sections have shown that large sample robustness and consistency at corners is not a
contradiction, at least if the scale parameter is fixed. However, the asymptotic robustness property
depends on the asymptotic choice of the scale parameter. This indicates that asymptotic results

have only restricted impact on the finite case.

The following example shows that the estimator is either outlier robust or corner preserving in the

finite case, depending how large the scale parameter is chosen.

Figure 4: Original Image Figure 5: Noisy Image

The example, given by Smith and Brady (1995, downloaded from http://www.fmrib.ox.ac.uk/

~steve/susan/susan.ps.gz) is a 100 x 100 pixels image with geometric figures and different kinds
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of edges and corners (see Figure 4). To each pixel, some normal distributed random noise with a
deviation of 26 (which is about 10% of the range of values, because the brightness is linearly scaled
from 0 (black) to 255 (white)) is added. In addition to the residuals which have expectation 0 and

bounded support, white colored outliers are added such that the model looks like the following:
Yij = (1= i) (m(zi5) + ei5) + i - 255,

where 6;; are iid Bernoulli distributed random variables with p = 0.01, in other words d;; ~ B(0.01),

see Figure 5.

Then, the noisy image is smoothed by the estimator with a Gaussian kernel function K with
bandwidth h,, = 0.02 and with a score function L with two different scale parameters. Smoothing
with scale parameter g, = 54.5 preserves corners but also the outliers (see Figure 6) while smoothing
with the scale parameter g, = 85 deletes the outliers but does not preserve the corners (see Figure
7).

Figure 6: Redescending M- Figure 7: Redescending M-
Smoother, g, = 54.5 Smoother, g, = 85

However, the redescending M-kernel smoother can be modified such that it is both corner-preserving
and robust against outliers. The basic idea is to clean the data set from (possible) outliers before
using the M-estimate. This is done by the trimming procedure of the Least-Trimmed-Squares (LTS)
estimator introduced by Rousseuw (1984) (see also Rousseeuw and Leroy 1987). The l-trimmed

LTS-estimator is defined as

m ) := arg min s ,
rrs,() g min ) (¥)
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where (s(5)(Y))ke(1,.... 47, is the order statistic of {s;(y) = (y — Yi;)? : (i,7) € Jna}, L € (0,0.5)
and r := |#J,5 - 1. The set of window indexes J, ;, was defined in (1).

Rousseeuw and van Aelst (1999) applied the LTS estimator to image analysis but without formal-
izing the two-dimensional regression model. A detailed model and a qualitative robustness analysis
is provided by Miiller (1999 and 2002). However, the LTS estimator is not corner preserving. For
getting a corner preserving and outlier robust estimator, we do not need the LTS-estimate itself

but only the trimmed set of observations

Ry () := {(i,)) € Jnge : sij(mrrsi(x)) < s, .—r(mrrsi(x))}

Then the so called Trimmed M-estimator or TM-smoother is basically the redescending M-

estimator based on the trimmed data set:

Definition 5 The TM-smoother m,, .(x) is defined as follows:

mpr(z) = argmin {|y — Yi ;.| : y is element of the closure of Ny, (x)}

where
No(z) = {y € R:y is alocal minimum of — Hy, »(y) such that H, »(y) >0
with y < Y%ojo 'Lf H’I/’L,JE(EO]'O) <0
and Yy > 1/iojo Z'f H;L,z(i/iojo) > 0}
and

Huoly):=— Y Kn, (x—ay) Ly = Yy).
(1,5)ERn,r ()

Kp, (x), L and (ig, jo) are defined as in Section 3.

In 1971, Hampel introduced a quantitative robustness measure called the breakdown point of an
estimator. It is the minimal quota of observations which can be arbitrarily biased so that the
estimator tends to +£o0o. The extension of this concept to linear models can be looked up in Miiller
(1997). The special case of a breakdown point in two-dimensional nonparametric regression is
defined in Miiller (2002a).
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Definition 6 Let z € [0,1] and
W) = {Wij  (,7) € Tna}
be the set of observations in the window Uy, (). Let
Vnpy = {(z)Jm : Zij # Yij for at most r of the zij} .

Then the maximum bias of an estimator M, (x) by replacing r observations of (y), , s
defined as

b (mn(x)7 (y)Jn,QNT) = ma‘X{’mn(x7 (y)Jn,x) - mn(x7 (Z)Jn,x)’ : (Z)Jn,ac € ynﬂ“,y}'
The breakdown point of 7, (x) by replacing observations of (y), ., is defined as

r

#Jn,z

€* (mn(SC)’ (?J)an) = min{ tr € IV with b (m"(x)’ (y)‘]"’z’r) - OO} ’

and the breakdown point of 7, (x) by replacing observations is defined as

e* (mn(:c)) = min {5* (mn(x)’ (y)an) : (y)an c ]R#J"”} .

Now we have the tools and definitions to prove the following

Theorem 5 Let Assumptions B1, B2, B3’, B4, B5’ hold and z € (0,1) \ 0D. Let further r € IN,
r < #Ino/2 and l =1r/#J, . Then
€ (mp,(z)) > L.

Applying the TM-smoother to the test image in Figure 5 leads to the result in Figure 8. Now the
corners are preserved and the outliers are deleted. Here we used a window size of 5 x5 pixels and the
Gaussian density both as kernel function K (with deviation h,, = 0.02) and score function L (with
deviation g, = 54.5). g, was automatically calculated as the median of the interquantile range
within the windows. The software package “epsi” contains the M-kernel smoother and the TM-

kernel smoother implemented as R-library and is downloadable from http://cran.r-project.org.

The comparison with other corner-preserving methods shows that they are not able to delete
outliers. Figure 9 provides for example the result for the adaptive weights smoother (AWS) of
Polzehl and Spokoiny (2000) which appeeared in their study as one of the best corner-preserving
methods.
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Figure O: Adaptive  Weights

Figure 8: TM-Smoother Smoother

Method H Absolute Distance ‘ Quadratic Distance
Noisy image 27.8 2025
Redescending M-smoother, g, = 54.5 16.1 609.0
Redescending M-smoother, g, = 85 19.2 662.8
TM-smoother, g, = 54.5, | = 0.15 13.9 350.9
Adaptive weights smoother 21.1 795.4

Table 1: Absolute and quadratic distance between the original and the reconstructed image

The existence of the original image gives us—in addition to the visual impression—a second cri-
terion for the performance of an estimator: it enables us to compute the absolute or quadratic
“distance” of the smoothed noisy picture to the original, i.e. n=2 >oic1 o1 Im(@ij) — mp(z45)| and
n=?2 D i jm1 (m(@ij) — mn(acij))z, respectively. In Table 1, the results for the different redescend-
ing M-kernel smoothers are given. This table also contains the corner preserving adaptive weights
smoother (AWS) of Polzehl and Spokoiny (2000).

7 Proofs

Proof of Lemma 1.

We prove Lemma 1 only for corner points xg. It is apparent that the proofs for consistency at
corner points also hold for regular points. Let, for some fixed nyg € IN, the set of discontinuities
9D N Up,,, (wo) be described by the edge curve z(t) and let o € I such that z(t9) = zo. Let in the

following proof always assume n > ng and ng large enough such that xg is the only corner point in
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oD N Uy,,,-
Let by := lim; », ' (t) and b, := limy\ 4, (). Then
Ti(y, xo) :{z€B2:z:xo+)\-bl,

and

T, (v,20) = {2 € R*: 2 = xo + A - b, A € IR}.

Consider the rotation of parameters O : IR? — IR? defined by

where
o bl + br
||bl + br| |2 .
Recall that ||b;||2 = ||br|]2 = 1 because x(t) is a natural parametrization. © maps ¢ (which is the

normalized sum of the direction vectors by, b, of the asymptotic tangents of x() onto the #'-axis

(é), see Fig. 10.

A€ R}

Figure 10: Rotation ©

Observe that Bll > 0 and B}n > 0. This is seen as follows: by the Cauchy-Schwarz inequality is

<bpby+b > = ||bo]|3+ < by, by >
1215 — | < by by > |

1—|<bpb > |

Y

0.

\%
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Hence

<b,c> = <b (b, + by) >

" 1oy + bl

and, since © is a rotation,

o - 1
b, = <b, (0 >
= <O(),0(c)>

= <bpc>
> 0.

Bll > 0 is shown analogously.

This implies, together with the Lipschitz continuity of 2/(¢), that there is a neighborhood U, (ty) of
to such that #V(t) > 0 on U.(t) and hence Z! invertible. Then there is, with U} := (:El)_l (Us(to)),
a function g : U — IR such that g(&'(t)) = #2(t) for all t € U.(ty) and which is twice differentiable
on Uy \ {#}}.

The function g can be given explicitly:

for z € Uy. Hence, for z € Uy \ {#}},

and

2
lim ¢'(2) = &+ =: 3, lim ¢'(2) = = =: 3,.
M) == Iy ==

Since the curve is simple, there exists, for sufficient small Uy, Uy C IR such that
(#(t):te I} N (01 X 02) - {(@1,9(@1)) 7le Ul}

and Z3 lies in the interior of Us. Let, without loss of generality, ©(D) N (U; x Us) lie beneath
g, ie. OD)N (U xUy) = {& € Uy x Uy : # < g(z')}. Then there is n; > ng such that
O (U, (w0)) € Uy xUs for all n > ny and hence G, (x0) = DNUy,, (x0) = {u € Uy, (x0) : 42 < g(a')}.
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Moreover, there exist two Taylor expansions of g at Zg:

7% =g(@') = ag + (@' — 30)f + (2" — 3p)m(z" - 7))

and
i =g(&") =+ (" — 29)Br + (3 — o), (&' — &)

where

lir%ni(a) =0 fori=1Inr

Define the transformation

Pn,zo * Uhn (:CO) - [_1’ 1]2

U — h—n(aco —u).

19

¢ maps the window Uy, (z¢) which contains the support of the kernel function onto the (mirror)

unit square, see Fig. 11.

(1~

/
¥Pn,zo
> Lo — 0

L.1)

Figure 11: ¢y, 4,

Now define

-1)

By (o) := {u € Uy (wo) : 4% < 32 + (@' — &d) (ﬁlll ey (@) + 5,1 mo,@(ﬂl))}-

By, (z0) is the area which lies, with respect to the rotated axes, “beneath” the asymptotic tangents

of xg, see Fig. 12.

Further is

Pz (Bnlwo)) = {uel-1, 112 : 2o — hyu € By (o)}
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Figure 12: B, (zq)

- {u € [-1,1)2 : O(xg — hnt)? < 72 + (O(z0 — hpu)! — 3})
1B ooty (B0 = hnt)") + 8,1 5y ey (B0 — hu)")] |
- {u € [-1,1]% : 32 — hpii® < 32 + (3} — hoii* — &)

: [ﬁlﬂ(—oo,ié} (&5 — hn@") + Br 1 (51 o) (Tg — hnﬁl)] }
= {ue[-1,1: —h,a® < (—hyi')
B (o0 (=P ) + Brlg,00) (—hnt')] }
= {ue[-L12: @ >a" - [Billjee) (@) + BrL(—co0)(@")]}.

Since ¢n 2, (Bn (o)) is independent of n we can rename it as
G(x0) = ¢nzo(Bn(w0)).

(1,-1) (-1,-1)

(0,0)

1) (-11

Figure 13: G(x)

Now consider, with the Taylor expansions mentioned above,

G, (.1'0) = Pn,xo (Gn (.1'0))
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= {ue[-1,11*: O(z — hpu)® < g(O(z0 — hyu)')}
- {u € [-1,1]% : 38 — hpii® < 32 + (3} — hoii* — &)
: [(ﬁz +(Fy — hat' — 59)) 1 (oo 3 (F6 — hu@l')
By + 1ol — i = 7)) 15 o) (8 — hni")] }
- {u € [-1L12: —hpi? < (—hnal)
(B m(=hnti)) B 0 (~hnii')

+ (Br + 1 (—hn)) Lo o) (—hn@h)] }
= {ue-L1P @ >a" - [(B +m(—hat')) L ooy (@)

Define

Thnax,n = {ue[rg}?jf%n} m(l, e, \m(U)!} :

Since

Gn(0) AG(x0)
- {’LL € [_17 1]2 : ‘ﬁQ - al(ﬁlﬂ[o,oo)(al) + 67’]1(700,0)(111))‘ < nmax,n} )

where the symmetric difference is defined as AAB := (A\ B)U (B \ A), the Lebesgue measure of
the symmetric difference can be estimated by A (G (20)AG(20)) < 6Mmax,n = o(1) if n — oo. It

follows immediately that

K(u)du = K(u)du + o(1),
/Gn@o) () /G(zo) (w)du + o(1)

since K is bounded. Hence, it suffices to show that

1
lim | — E K, (xo — x45) — / K(u)du | =0.
n—oo <n2 J Gn(ﬂﬁo)

:EijEén(xo)

Consider

{(’L,]) S {1,. .. ,n}2 1T € Gn(xo)},
1Y(z) = {(i,j) e {1,...,n}?: Uy (3g) C Gn(xo)} and
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10(w0) = {(,3) € {1, n}?: Us (35) 0 Gin(0) # 0}

Let further

GYU(xg) = U Ui (xi5) and
(i.3) €L (xo)
Gllwo) = U Usley)

(4,5)€I2 (20)

as well as
Gyl{ = Son,zo(érl{(xO))
— {u € [-1, 1]2 :x9 — uh, € Gi{(xo)} and
Gg = ‘Pn,mo(éroz(xo))

= {ue[-1,12: 2o — uhy, € G(x0)} .

Obviously is

1Y (o) C 15" (z0) C 12 (wo),
Gy (20) € Gu(xo) € G (x0)  and

Notice that

L Z min  {Kp, (vo —u)}

€Uy (zi
(i)Y (a0) "<V 79

1
< 5 > K, (w0 — i)
(i,§) €15 (w0)
1
< — Z max {Kp, (xo—u)}

eU ij
()elR o) " )
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as well as

iz Z min  {K}, (vo —u)}

()T (xo) "2 9

1 1
- K = (zn—
wig, 3 (o (500

(i.4) I (wo

b ()

(4.9)€I¥ (xo0)

/ K (a0 (1)) du
GY(z0)

IN

IN

e
Lo

and, by the same arguments,

3 Z max {Kp, (vo —u)}

€U (v
(i.4) €10 (o) "<V (719

> K (u)du.
Gn(zo)

From

1
E Z 5113,)( - {Khn(xo - u)}
(i) el (eo) " 3 79
1 .
~ 2 Z min  {K}, (vo —u)}

€Uy (i
(i) €10 (a0) "<V (719

max K, (xg—u
e U0 = 0}

1
< =D

(i.3) €L (o)

— min K (xg—u
ueU%(%){ hn (T0 )}‘

+% Z max {Kp, (vo —u)}

(1.0)€19 (@Y (wo) "V 2 )
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1 xo — max o — min
<« _t TO7Sy ) g [T0 TSy
< X (e(5E) k()

" (i,4)€l¥ (o)

1
o > Dox, {K(w) (2)
" (i,9)EIQ (@Y (w0)
1
o (Wz)

O(n)

max min

i Sij

1
n2h2 Z ¢ hn
" (i.)€Iy (o)
—_——
O(n2h2) 0(7)

1
- 0(%)’

max ,__ Lo — U
jj i=arg max )K( >,

u€lU 1 (2
2n

IN

where

: . o —u
b =arg  min K
U‘GUQL (:E”) hn

and C' is a Lipschitz constant of K, we have

% > Khn(fﬂo—xij):/

xijEGn(xo) Gn(xo)

K(wdu+0 ().

nhy,
and hence the first part of the lemma follows.

Notice that the estimation of (2) follows from the fact that z(¢) is—apart from a finite number of
singularities—regular and hence rectifiable. That means that z(¢) has finite length and hence goes

through O(n) squares of sidelength n=!.

Finally, it has to be shown that

/ K (u)du > 0.
G(zo)

Let a € (0,27) be the angle between the asymptotic tangents of z.

Since K (0) > 0 and the fact that K is continuous in 0, there is an £ > 0 such that K (u) > 0 for all
u < U€,||~||2 = {u € [~1, 1]2 : |[lull2 < e}. Hence,

K(u)du > / K(u)du
G(:Eo) G(IO)OU&H‘HQ
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> min K(m)/ du
€U 1. 1|5 G(zo)NUL,

112
2

€
= min K(z) |-«
$6UEaH'H2 2
> 0.
O
Proof of Corollary 1.
The corollary follows from the fact that we have
! Zn:Kp (2 — 24) = — /Kp(u)du—i—O( ! > (3)
n2 52 hn v hip*2 nh%pfl
forp>1and z € (0,1)% 0

Proof of Lemma 2.
We provide the proof only for the case g € D. The proof for zo € (0,1)? \ D is the same, even

more simple. With Lemma 1, Corollary 1, and the Lipschitz continuity of f’ we obtain

n

1 d
sup | — K, (z0 — xz‘j)Ed—Lgn (y = Yij) = fau,, (y — m(zo))
yelRr |1 ij=1 Y
5 Koo ay)
= Sup |—5 hn \ L0 — Tg4
yeR n? Y

(i,§)€IS™ ()

- K (u)duf'(y —m(zo))

= > Kh,, (zo — xij)
(i-5)€n g \IS™ (0)
f41, <y—u(wij)—u
dy gn In

_ <1 _ /G(IO) K(u)du) f'(y = u(x0))

1
< sup {—2 Z Ky, (zo — i)
yeR (7 =
(i.5)EL™ (x0)

) stwa
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~ / L)|f'(y — m(xiy) — vgn) — F(y — m(zo))|dv
1
+_ Z Khn(xo —SCZ']')
(6,1)€ T, \ IS ™ (0)

[ - nai) v - 10 - u(wo))\dv}

Proof of Lemma 3.
As in Lemma 2, we give the proof only for xg € 0D, the most complicated case. Note that the
Lipschitz continuity of L’ implies the Lipschitz continuity of A’. With Lemma 1 and Corollary 1,

we obtain

1 « d

sup |— Ky, (v — xi)E—L(y — Y;;) — h! y —m(xo
S 22 K (@ = ) B Ly = ¥i) = iy (= ()
1
= — K — W (g — g
sup | E ha (T — @ij) W (y — m(w45))

_,_% Z K, (x — zi5)h (y — p(ziy))

(’i,j)EJn,xO\[,?" (zo0)

_ <1 - K(u)du) B (y — w(zo))
G(zo)

IN

sup o~ > K, (& — @)W (y — m(zy) — B (y = m(x0))]
(i.4) LT (o)
b X Kulee )l ae) - W )

(iaj)e‘]n,xo\[r?n (mO)
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Proof of Lemma 4.

The proof is the same as in the one dimensional case given by Hillebrand and Miiller (2003) in
Lemma 4 using the Fourier transform of L’. The only difference is that ¢, (u) has to be defined
as on(u) = n=2h,? dohio1 K (%) e~ ™Yk instead of ¢p(u) = n~th, !> | K (%) e ¥k,
where i = y/—1. Then the condition n=1h, 1g-2 — 0 of Assumption B5 is used instead of
n~thlg-4 — 0 for g, converging to zero. If g, is fixed, then it is clear that we need only
Assumption B5’. Then the result can be shown also without the Fourier transform: Since L'
is bounded because of Assumption B4’, we obtain pointwise convergence by using Chebychev’s
inequality and the property (3). Then the Lipschitz continuity of L’ and A’ imply the uniform

convergence. a

Proof of Theorem 1.

The proof of Theorem 1 is the same as in the one dimensional case given by Hillebrand and Miiller
(2003). In particular it is based on Lemma 2 and Lemma 4. For fixed g,, the proof is same as
for g, — 0 if f is replaced by h and Lemma 3 is used instead of Lemma 2. See also the proof of
Theorem 2. O

Proof of Theorem 2.

We prove the theorem only for the case that the scale parameter g, is converging to zero. The
proof for the case with fixed scale is the same if fg,, is replaced by hq,, . Thereby hq,, has the
same properties as fq,,,  because of Assumptions 42’ and B4’. For that note in particular that the

support of h is (—a — b,a + b) and that h is strongly unimodal.

Observe that

=0 : y<ar—d

>0 @ a1—d<y<-—d

=0 : y=-—d

<0 : —d<y<ax—d
fc/l,uxo(y) =0 : as—d<y<a

>0 @ a1 <y<o0

=0 : y=0

<0 : O<y<az

=0 : y>as.

Hence, for all sufficient small €', e; > 0 there exists § > 0 such that

P ()] > 6

for all y € [Cy,—¢€'|U[¢', Cy], where Cy and Cy are chosen such that P(Cy <Y, —m(zg) < Cs) >
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1 —¢e1. Of course, a1 < C7 < Cy < ao. Lemma 2 and Lemma 4 provide that for arbitrarily small

g9 > 0, there exists ng € IN such that for all n > ng
P (Sulré 2o () = faw,, (v — m(0))] > 5) < e
ye

We conclude that, if Yz, —m(xo) lies in [C1, Co] and supye g [Hy, 0 (v) = f§ Vg (y—m(z0))| < 0, the
closest local minimum of —Hy, 4, (y) in descent direction lies in (m(zo) —¢’, m(zg)+¢’). Therefore,
for all n; € IN with [ > lp and n;, > no,

P(|mn, (w0) = m(xo)| > €)

< P<Ymo —m(zo) & [C1, (Y]
V' sup ’H;’Ll,xo (y) - fcli,uzo (y - m(.%'()))‘ > 5)
yelR
< P (Yz, —m(zo) ¢ [Cr, o)
+P (Sup ‘H;zl,mo(y) - fc/l,z/zo (y - m(.%'()))’ > 5)
yelR
< g1 +eo.

Proof of Theorem 3.
It suffices to show the claim for = € (0,1)% \ dD. We will create, for arbitrarily small ¢ > 0, a
distribution which lies in the e-Levy-neighborhood of P and has a multimodal density.

Let ¢ > 0 such that [ f(y)dy > 0. Let further § := —f'(c) > 0.

Consider )
2 . 1 3
a(l— y—c— 5 bQ> ifye|lc—q,c+ 5
¢ (y) = ( 2b) [ 2b Qb]
0 else,
. /58 /328
where a := /2> and b:= /4=,
It is easily verified that ¢. is continuously differentiable, Lipschitz continuous, ¢.(c) = g and

[ ge(u)du = 1. Hence
fe(y) == (=) f(y) + ¢ (y)

is a density function with fl(¢) = €-0 > 0 and the corresponding distribution P. lies in the
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= (y)

Sl
o
+

8les

1
|
Cc— 57 c c+2

Figure 14: ¢.(y)

e-Levy-neighborhood of P, since

|F(y) — Fe(y)| = ¢ |F(y) — Ge(y)| < e,

where G.(y) is the distribution function of the distribution Q. with density ¢.(y) and F.(y) is the

distribution function of the distribution P:.

f<(y)

Figure 15: f.(y) and fé(y)

Notice that f!(c+3/(2b)) < 0 since ¢ (c+ 3/(2b)) = 0 Since f. is differentiable, it has a local
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maximum between ¢ and ¢ + 3/(2b). For sufficient small € > 0, ¢ + 3/(2b) is close to ¢ and hence

h f(u)du > 0.

3
ctap

Since Lemmas 2 and 4 also hold for f-(y), Hy »(y) has alocal maximum in [m(x) + ¢, m(x) + 3/(20)]
with a probability tending to one if n — oo. If additionally the starting point is larger than
m(x) + ¢+ 3/(2b), then m,(x) will be larger than m(x) + c.

Let (Q-)™(®) denote the distribution of the estimator my,(z) if Q. is the distribution of the resid-
uals. Then we have, if €; > 0 is the (with n — oo vanishing) probability that H,, ,(y) has no local
maximum in [m(z) + ¢, m(x) + ¢ + 3/(2b)],

(Q2)"™ ) (fm(=) + ¢, 00]) = /: fe(w)du — 1.

Since also, by Theorem 1,
(P)"™ @ ([m(x) + ¢/2,00]) < e,

for some €9 > 0 vanishing as n becomes large, we have, as in Fig. 16 sketched,

min / fe(u)du —e1 — e,
c+2%

min / flu)du — e —e1 — e,
c+2%

i (P2, (@uym)

Vv
(\CN

Vv
N O

} |

Figure 16: Distribution Functions of (P)™(*) and (Q.)™»®).
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Proof of Theorem 4
Let Q: € Uz <(P) and G its distribution function. Let further fiyax := maxyer f(y) and hg_(y) =
[ L'(y — u) dG(u). Because of

F(y) = fmax e —e<F(ly—€) —e <Ge(y) S Fly+e)+e < F(y) + fmax € +¢
we have
|Ge(y) = F(Y)| < fumax-€+¢ (4)

for all y € IR. Then Assumption B4’ implies

Ih, () — W ()| = ' / L) (Galy —w)  F(y — u)) du
g "
< /gu: ()] Galy — u) — Fly — u)| du
< [ I @I ) d
= C_-gs,

where C := ffg | (w)|du( fmax + 1)-
Let £1 > 0 be arbitrarily small. Let 6 := min {|h'(y)| : y € [—a, —&1] U [e1,a]}. Obviously is § > 0.

Let £ < & - 5. Then

sup |/ (y) — hg_(y)] <

1)
yelR 2

Since Lemmas 3 and 4 also hold for G,, we obtain that, for arbitrarily small 5 > 0, there exists

ng € IN such that with probability 1 — g5 for all n > nyg,

5
sup |y, o (y) — he, (y — m(2))] < 5.
yelR

Hence, with probability 1 — o for all n > ny,

sup |H,, . (y) — W' (y — m(x))| <.
yelR

This implies
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H .(y) >0 on [m(z)—am(z)—e]

n,x

and
H,,(y) <0 on  [m(x)+e1,m(@)+a]

2. at least one zero of Hy, ,.(y), which is a local minimum of —H,, . (y), lies in the e;-neighborhood

of m(x).

We conclude that, if the starting point lies in (m(z;,) — a,m(x;,) + a), the closest zero of Hj, ,(y)
in search direction lies, for n > ng, with probability larger than 1 — e in [m(x) — 1, m(z) + €1].
From (4) we have that the probability of the starting point lying in (m(z;,) —a, m(z;,)+a) is larger
than 1 — 2(fmax + 1)e. Hence

(Q2)™ ) ([m(x) — e1,m(z) +e1]) > 1 — &2 = 2(fmax + 1e.

Since, by Theorem 1,
(P)™ @ ([m(x) — e1,m(z) + 1)) > 1 — e,

we have, for n > nyg

dr ((P)m”(“”), (Qs)m”(z)) < max{2e1, 9 + 2(fuax + 1)}

ST 1—e2—2(fmax+1)e

o = ———]
m(z)—e1 m(z) m(z)+er

Y

Figure 17: Distribution Functions of (P)m”(m) and (Qs)m"(m).

Proof of Theorem 5.
Let (y),. € R#/"= and set
Ymin ‘= min{yij : (Z,]) € Jn,x}
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and

Ymax = max{y;; : (i,7) € Jnz}

Let (2)J,, € Ynry- Since at least #.J,,, — r elements of (), , are contained in [Ymin, Ymax), We

have

#Jn,z*r

?I/Ié% S(k) (y) < (#Jn,z - T)(ymax - ymin)Q- (5)
k=1

Let § € argminger Zk et S(k)(y). Then

je [?/min = V#Jne — T(Ymax = Ymin), Ymax + v/ #JIna = 7(Ymax — Ymin)
since otherwise there is at least one z;;, With 2iyj; = Yiojo € [Ymin, Ymax| and

Siojo(#) = Wivjo — 9)° > #Jnz — ) (Ymax — Ymin)?
which is a contradiction to (5). If some
ziyj € IR\ {ymm — 2/ #Jnz — (Ymax — Ymin)s Ymax + 27/ #FJIn,z — " (Ymax — Ymin)

then s, j, (9) = (2ij, — 9)* > (#Jne — ) (Ymax — Ymin)? and hence (i1, j1) ¢ Ry, ().
This means that all z;; with (,j) € Ry, »(z) lie in

[ymm — 2/ #Jna = r(Ymax = Ymin); Ymax + 2v/#Jnze — 7(Ymax — Ymin } -

From the definition of m, (z) it follows immediately that m,, ,(x) lies in the support of Hj, ,(y)

which is not larger than

|:ymin -2 #Jn,x - T(ymax - ymin) 9, Ymax + 2 #Jn x ymax ymln + g]
This proves the claim. O
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