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Abstract

Removing a high amount of noise and preserving most structure are desireable properties of an

image smoother. Unfortunately, they seem to be contradictive: usually one can only improve

one property at the cost of the other one. In this article we show that a version of the M-kernel

smoother introduced by Chu et al. (1998) is, asymptotically, both outlier robust and corner-

preserving. Furthermore, we introduce an improved method, the TM estimator, which is even

able to remove outliers in the finite case while still having strong corner-preserving properties.

In a simulation example it outperforms other corner-preserving smoothers. A software package

containing both smoothers can be downloaded from the internet.
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1 Introduction

The main subject of this paper is the reconstruction of a noisy image. Since images typically have

sharp edges and corners, a reconstruction method should preserve them. The classical smoothing

methods such as the mean kernel estimator are smoothing the edges and corners. Hence they are

not adequate. Recently, several edge- and corner-preserving smoothing methods were proposed.

Some of them are methods based on wavelets and related methods (see e.g. Donoho et al. (1995),

Candès and Donoho (1999), Donoho (1999) and the references therein). Other methods are based

on special local estimators where the reconstructed pixel value is calculated by the pixel values of

pixel positions in a neighborhood (window) around its pixel position. Usually a kernel function

provides the neighborhood and eventually weights for the pixel values in the neighborhood so that

these estimators are called kernel estimators. Chu et al. (1998) proposed besides other methods

the use of an M-kernel estimator based on a redescending objective function, while Polzehl and

Spokoiny (2000, 2003) proposed methods based on an adaptive choice of the kernel function.

But none of these methods can eliminate isolated outliers, i.e. none of them is outlier robust.

One can even say that the better the reconstruction of corners with small angles is the worse the

outlier robustness is. The reason is that the methods with good corner preserving properties are

also preserving the isolated outliers. It seems that there is a contradiction between the corner

preserving property and outlier robustness.

There are many reconstruction methods which are outlier robust. The most prominent ones in

image analysis are kernel estimators based on outlier robust estimators such as the median smoother

studied in Koch (1996) and the estimators based on least trimmed squares estimators studied by

Meer et al. (1990, 1991), Rousseeuw and Van Aelst (1999), Müller (1999, 2002a,b). Often a kernel

estimator based on a robust estimator is edge preserving since a good robust estimator follows

the majority of the data. But none of these estimators is corner preserving since at a corner the

majority of the pixel values within a window are different from the values inside the corner.

Redescending M-estimators are known to be outlier robust since their objective function is bounded

(see e.g. Huber 1981, Hampel et al. 1986). However, the estimator proposed by Chu et al. (1998),

which is a kernel estimator based on a redescending M-estimator, is not outlier robust due to the

special choice of the starting point for finding a local minimum.

Nevertheless, in this paper we show that the redescending M-kernel estimator of Chu et al. (1998)

can possess both properties, robustness and preservation of corners, at least asymptotically. Since

this is not the case in the finite sample case, a modification is proposed which satisfies both prop-
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erties for finite samples.

In Section 2 a description of edges and corners is given by using some notions from differential

geometry and in Section 3 the estimator of Chu et. al. is defined. The asymptotic properties

concerning robustness and corner preserving of this estimator are considered in Sections 4 and 5.

In the asymptotic case, a necessary condition for corner preserving is the consistency at corners.

In Hillebrand and Müller (2003), the consistency at jump points was studied for the estimator of

Chu et al. in the one-dimensional case. This result is now transferred to the two-dimensional case

in Section 4 by using the notions from differential geometry given in Section 2. The consistency is

shown for corners with arbitrary small angles and is shown for the case that the scale parameter

of the objective function is fixed and for the case that the scale parameter converges to zero with

growing sample size.

In Hillebrand and Müller (2003), it was shown that the consistency depends strongly on the form

of the error distribution if the scale parameter converges to zero. As soon as the error distribution

is not strictly unimodal, the consistency becomes an inconsistency. This makes the estimator

nonrobust against small changes of the error distribution. To give a rigorous proof of this fact, we

transfer Hampels (1971) large sample robustness to nonparametric regression in Section 5. We show

that the estimator of Chu et al. is not robust in this sense if the scale parameter is converging to

zero. However, if the scale parameter is fixed, then large sample robustness in the sense of Hampel

is proved. This means that asymptotically robustness and corner preserving is not a contradiction.

However, this is a contradiction in the finite case. In Section 6 it is shown by an example that

the method of Chu et al. is not corner preserving and outlier robust simultaneously in the finite

sample case. This example shows that its corner preserving property and outlier robustness depend

on the scale parameter of the objective function. The smaller the scale parameter is chosen the

better the corner preserving property is. But then the outlier robustness is bad. Conversely, the

larger the scale parameter is the better the outlier robustness is. But then corners are not preserved

completely. Since the estimator of Chu et al. is not simultaneously corner preserving and outlier

robust in the finite sample case, we propose in Section 6 the TM- estimator, a trimmed version

of the estimator of Chu et al. In a simulation study we compare this estimator with the original

estimator of Chu et al. We also compare the TM-estimator with the AWS method of Polzehl and

Spokoiny (2000) which appeared in a simulation study of Polzehl and Spokoiny (2000) as the best

corner preserving method within several other methods. It turns out that the TM-estimator is the

only one which preserves corners and is outlier robust. We also prove a finite sample robustness

property of it.

All proofs are given in Section 7.
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2 Description of images with edges and corners

An image is given by pixel values m(xij) (typically in a bounded interval R of nonnegative numbers)

at pixel positions xij , i, j = 1, . . . , n, for which can be assumed w.l.o.g. xij ∈ [0, 1]2. The function

m can be interpreted as regression function. But since images have usually edges and corners, this

regression function is not everywhere continuous. It has several discontinuities.

While the set of discontinuities of a one-dimensional almost everywhere continuous regression func-

tion is usually the union of “jumps”, the two-dimensional case is much more complicated: here the

set of discontinuities of an a.e. continuous regression function is—apart from functions without

a visual structure—a one-dimensional subset of the image that can have different shapes like the

border lines in the examples in Fig. 1.
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Figure 1: Two-dimensional discontinuities

To obtain a formal characterization of the discontinuities, let us have a brief excursus to Differential

Geometry (see, for example, Shikin (1995)):

Let I := [a , b] ⊂ IR be a compact interval and let x =
(x1

x2

)
: I → IR2 be continuous. Then the set

γ := {x(t) : t ∈ I}
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is called a parametrically defined (parametrized) plane curve. The curve γ is called regular

if the derivatives of x1(t) and x2(t) exists. If the derivatives satisfy ‖x′(t)‖ = 1 for all t ∈ I, then

the curve has a natural parametrization. A curve is named a simple, or Jordan curve with

respect to given parametrization x = x(t), t ∈ I, if x(t) is injective on [a, b] or, if the curve is

closed (i.e. x(a) = x(b)), on (a, b).

Up to this point, we could use standard definitions. But for our very special topic of interest,

we have to create some special structures. For geometric singularities (points where the natural

parametrization is not differentiable) we can define the following:

Definition 1 If γ is a simple curve with a natural parametrization on I \ {t0} for some t0 ∈ I

and the limits limtրt0 x′(t) and limtցt0 x′(t) exist, then the pair of asymptotic tangents of γ

in x0 = x(t0) is defined as

Tl(γ, x0) := {z ∈ IR2 : z = x0 + λ · lim
tրt0

x′(t), λ ∈ IR}

and

Tr(γ, x0) := {z ∈ IR2 : z = x0 + λ · lim
tցt0

x′(t), λ ∈ IR}.

X0

Figure 2: Asymptotic tangents

Notice that, if x′(t) is Lipschitz continuous on I \ {t0} then the asymtotic tangents exist by the

Cauchy criterion. In Figure 2, the asymptotic tangents are sketched by dotted lines.

If x0 is a regular point then both asymptotic tangents are similar and equal to the tangent in that

point. But if we have a cuspidal point (see the fourth image of Fig. 1) then the asymptotic tangents

are also equal. Hence, “real” corners in a visual sense, as those in Image 2 and 3 of Fig. 1, are

characterized by the fact that they have two different asymptotic tangents.
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Definition 2 Let γ be a simple curve having a parametrization

x = x(t), t ∈ I

which is natural and with a bounded second derivative x′′(t) in some open interval I ′ ⊂ I except at

a point x0 = x(t0), t0 ∈ I ′. Then x0 is called a corner point if the two asymptotic tangents of x0

are different.

It is apparent that the corner point is well-defined, i.e. that the pair of asymptotic tangents exists.

Definition 3 An edge curve is a closed simple curve with a natural parametrization and a

bounded second derivative except at a finite number of corner points.

In the following, we will consider images given by m(x) := µ(x) + d11D(x) where m : [0, 1]2 → R

is continuous, d > 0 and D is a nonempty closed set with a boundary ∂D which is the disjoint

union of a finite number of edge curves. Observe that a relaxation of these assumptions, allowing

d = d(x) to be smooth in x and bounded downwards by some constant d0 > 0, is possible.

3 The estimator and assumptions

Suppose that we observe a noisy image given by

Yij = m(xij) + ǫij,

where ǫij are errors. To estimate the original image m(x) on the basis of the observations Y =

(Yij)i,j=1,...,n, we use the estimator

mn(x) := m̂n,x(Y ) := arg min
y∈IR

{|y − Yi0j0| : y is element of Nn(x)}

where

Nn(x) := {y ∈ IR : y is local minimum of − Hn,x(y)

with y ≤ Yi0j0 if − H ′
n,x(Yi0j0) ≥ 0

and y > Yi0j0 if − H ′
n,x(Yi0j0) < 0

}



Robust Corner-Preserving Image Smoothing 7

and

Hn,x(y) :=
1

n2

n∑

i,j=1

Khn
(x − xij)Lgn(y − Yij),

(i0, j0) := arg min(i,j)∈{1,...,n}2 ||x − xij ||2 (if xk = (xk
i + xk

i+1)/2, for k = 1 or k = 2, then define

i0 := i) and Khn
(x) := 1/h2

nK(x/hn), Lgn(y) := 1/gnLy(x/gn) with kernel functions K : IR2 −→ IR

and L : IR −→ IR and bandwidths hn, gn ∈ (0,∞). Since it is easier to handle zeros of a function

instead of minima, we notice that mn(x) is element of {y : H ′
n,x(y) = 0}. The estimator mn(x)

can be calculated by Newton Raphson method starting at the center of the window (i0, j0) and

searching for the next minimum of Hn,x(y) in descending direction. Existence and uniqueness of

this estimator follows as in the one-dimensional case (see Hillebrand and Müller 2003).

The bandwidths gn can be also interpreted as scale parameter since the kernel function is the score

function of M-estimators, usually denoted by ρ. Consistency and asymptotic robustness are studied

for two situations: for scale parameter gn converging to zero and for fixed scale parameter gn = 1.

To prove consistency and robustness for scale parameter converging to zero, we make the following

assumptions.

A1 The regression errors ǫij are independent identically distributed with a density function f sup-

ported on a bounded or unbounded interval I ⊂ IR, and the Lipschitz continuous derivative

f ′ has the property f ′(y) 6= 0 for all y ∈ I \ {0} (i.e. f is strongly unimodal in 0).

A2 As Assumption A1, but with the additional assumption that f is supported on a bounded

interval (a1, a2) and a2 − a1 < d (where d is the jump height, see B2). This rather strong

assumption is only needed for proving the consistency at the discontinuities.

Further assumptions are

B1 The design points are xij :=
(

i−1/2
n , j−1/2

n

)

, i, j = 1, . . . , n.

B2 The regression function is m(x) := µ(x) + d11D(x), where m(x) is defined on [0 , 1]2 and µ(x)

is locally Lipschitz continuous on (0 , 1)2, d > 0, and D is a nonempty closed set with a

boundary ∂D which is the disjoint union of a finite number of edge curves.

B3 K(u) ≥ 0 on (0, 1)2, 0 else, K(u) is Lipschitz continuous, K(0) > 0 and
∫

K(u)du = 1.

B4 L(v) is a nonnegative function, has a Lipschitz continuous derivative, L(0) 6= 0,
∫

L(v)dv = 1,
∫

L(v)|v|dv < ∞ and
∫

L′(v)|v|dv < ∞.
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B5 With n → ∞ we have gn → 0, hn → 0, n−1h−2
n → 0 and n−1h−1

n g−2
n → 0.

For the case that the scale parameter is fixed, we replace the assumptions A0, A1, A2, B4 and B5

by the following assumptions:

A1’ The regression errors ǫij are independently identically distributed with density function f

which is symmetric on [−b, b] and has only one local and global maximum on its support in

0 (i.e. f is (weakly) unimodal).

A2’ As Assumption A1’, but with the additional assumption that the density function f is sup-

ported on the interval (−a, a) and that 2a + 2b < d.

B4’ L has two Lipschitz continuous derivatives, is nonnegative, symmetric, supported by (−b, b)

and strongly unimodal on its support: L′ is positive on (−b, 0). Finally, L′′ has a finite

number of zeros on (−b, b).

B5’ gn = 1 and, with n → ∞, hn → 0 and n−1h−1
n → 0.

4 Consistency

The following consistency results hold for both cases that the scale parameter gn is converging to

zero and that the scale parameter gn is fixed by gn = 1. The two cases are reflected by Assumptions

A1, A2, B4 and B5 and Assumptions A1’, A2’, B4’ and B5’, respectively.

Consistency at continuity points of the image can be shown under the weak assumptions A1 or A1’

for the errors.

Theorem 1 Let x0 ∈ (0 , 1)2 \ ∂D and let Assumptions A1, B1 to B5 or Assumptions A1’, B1,

B2, B3, B4’, B5’ hold. Then, for all ε > 0,

lim
n→∞

P (|mn(x0) − m(x0)| > ε) = 0.

For the discontinuity points x0 ∈ ∂D the more stronger Assumptions A2 and A2’, respectively, for

the errors are needed. Moreover, we assume that the discontinuity point x0 is a gridpoint for some

n ∈ IN . Then there exists a subsequence (nl)l∈IN such that x0 is a grid point for all nl ∈ IN .
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Theorem 2 Let x0 ∈ ∂D be a gridpoint for some n ∈ IN and let Assumptions A2, B1 to B5 or

Assumptions A2’, B1, B2, B3, B4’, B5’ hold. Then, for all ε > 0,

lim
l→∞

P (|mnl
(x0) − m(x0)| > ε) = 0.

For the proof of the theorems we need the following lemmas. Essential for the proof of Theorem

2 is in particular Lemma 1. It claims that the sum of the kernel weights of the pixel positions

in D converges for x0 ∈ ∂D. For this purpose let Uhn
(x0) := {x ∈ [0, 1]2 : ||x0 − x||∞ ≤ hn} be

the window around x0 with respect to hn and Ḡn(x0) := D ∩ Uhn
(x0). If x0 ∈ (0, 1) \ ∂D then

Ḡn(x0) = ∅ or Ḡn(x0) = Uhn
(x0) for sufficiently large n. If x0 ∈ ∂D then ∅ 6= Ḡn(x0) ( Uhn

(x0)

for all n ∈ IN (see Fig. 3).

Lemma 1 Let x0 ∈ ∂D and let Assumptions B1 to B3, B5 or Assumptions B1, B2, B3, B5’ hold.

Then there is G(x0) ⊂ [−1, 1]2 such that

1

n2

∑

xij∈Ḡn(x0)

Khn
(x0 − xij) =

∫

G(x0)
K(u)du + o(1)

and 1 >
∫

G(x0) K(u)du > 0.
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Uhn
(x0)

Ḡn(x0)

Figure 3: Ḡn(x0) ⊂ Uhn
(x0)

We define the set of indexes of the window which contains all positive kernel weights by

Jn,x0
:=
{
(i, j) ∈ {1, . . . , n}2 : ||x0 − xij ||∞ ≤ hn

}
(1)

and the set of indexes in Jn,x0
corresponding to D by

IḠn
n (x0) :=

{
(i, j) ∈ {1, . . . , n}2 : xij ∈ Ḡn(x0)

}
.
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Observe that, for all (i, j) ∈ Jn,x0
\ IḠn

n (x0), we have m(xij) = µ(xij), and for all (i, j) ∈ IḠn
n (x0),

we have m(xij) = µ(xij) + d.

Then we have the following corollary.

Corollary 1

1

n2

∑

(i,j)∈Jn,x0
\IḠn

n (x0)

Khn
(x0 − xij) = 1 −

∫

G(x0)
K(u)du + o(1).

Note that the equalities in Lemma 1 and Corollary 1 hold also for x0 ∈ (0, 1)2 \∂D. If x0 ∈ D \∂D

then
∫

G(x0) K(u)du = 1 and if x0 ∈ (0, 1)2 \ D then
∫

G(x0) K(u)du = 0.

Define

νx0
:=

∫

G(x0)
K(u)du

and, for the case that the scale parameter is converging to zero,

fd,νx0
(y) :=

{

νx0
f(y) + (1 − νx0

)f(y + d) for νx0
∈ (0, 1),

f(y) for νx0
= 1 or νx0

= 0.

Lemma 2 Let x0 ∈ (0, 1)2 and let Assumptions A0, B1 to B5 hold. Then

sup
y∈IR

∣
∣
∣EH ′

n,x0
(y) − f ′

d,νx0
(y − m(x0))

∣
∣
∣ = o(1).

For the case that the scale parameter is fixed by gn = 1, define

hd,νx0
(y) :=

{

νx0
h(y) + (1 − νx0

)h(y + d) for νx0
∈ (0, 1),

h(y) for νx0
= 1 or νx0

= 0,

where h(y) :=
∫

L(y − u)P (du).

Lemma 3 Let x0 ∈ (0, 1)2 and let Assumptions A0’, B1, B2, B3, B4’, B5’ hold. Then

sup
y∈IR

∣
∣
∣EH ′

n,x0
(y) − h′

d,νx0
(y − m(x0))

∣
∣
∣ = o(1).
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Lemma 4 Let x0 ∈ (0, 1)2 and let Assumptions A0, B1 to B5 or Assumptions A0’, B1, B2, B3,

B4’, B5’ hold. Then

lim
n→∞

P

(

sup
y∈IR

|H ′
n,x0

(y) − EH ′
n,x0

(y)| < ǫ

)

= 1 for all ǫ > 0.

5 Large sample robustness

As robustness criterium we use the large sample robustness introduced by Hamel (1971) (see also

Huber 1981) and transfer it from the location case to nonparametric regression. For that we use

as metric on P, the space of the probability measures on IR, the Levy metric

dL(P,Q) := min{ε : F (y − ε) − ε ≤ G(y) ≤ F (y + ε) + ε for all y ∈ IR},

where F and G are the distribution functions of the probability measures P and Q, respectively.

The ε-Levy neighborhood of P is defined as

UL,ε(P ) = {Q ∈ P : dL(P,Q) ≤ ε}.

Let m : J ⊂ IR2 → I ⊂ IR, x 7→ m(x), be a regression function, and let Y := (Yij)i,j=1,...,n where Yij

are observations at xij ∈ J . For the estimator m̂n,x : IRn×n → IR, let (P )m̂n,x(Y ) be the distribution

of m̂n,x(Y ) if P is the distribution of the iid residuals Yij − m(xij).

Definition 4 The estimator m̂n,x(Y ) is called robust for large samples at P in x if, for all

ε∗ > 0, ε > 0 and N ∈ IN exist such that

dL

(

(P )m̂n,x(Y ), (Q)m̂n,x(Y )
)

≤ ε∗ for all Q ∈ UL,ε(P ) and n ≥ N.

Note that the estimator m̂n,x(Y ) of Chu et al. is abbreviated by mn(x).

Hillebrand and Müller (2003) showed for the one-dimensional case that the consistency of the

estimator mn(x) depends strongly on the assumptions for the errors if the scale parameter is

converging to zero. They showed in particular that slight changes of the Assumption A1 can lead

to inconsistency: only a saddle point in the distribution function is enough to make the estimator

inconsistent. The following theorem gives the reason for such behavior.
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Theorem 3 Let Assumptions B1 to B5 hold and let P be a distribution fulfilling A1. Let further

x0 ∈ (0, 1)2. Then mn(x0) is not robust at P in x0 for large samples.

However, large sample robustness holds if the scale parameter is fixed, by gn = 1 for example.

Theorem 4 Let Assumptions B1, B2, B3, B4’, B5’ hold and let P be a distribution fulfilling A1′.

Let x0 ∈ (0, 1)2 \ ∂D. Then mn(x0) is pointwise robust for large samples at P in x0.

If P fulfills A2’ and x0 is a gridpoint for some n ∈ IN (see Section 4), then the estimator is even

robust at x0 ∈ ∂D. The proof is similar to the one of Theorem 4, with h′
d,νx0

(y) instead of h′(y).

6 Robustness and corner preservation for finite samples

The foregoing sections have shown that large sample robustness and consistency at corners is not a

contradiction, at least if the scale parameter is fixed. However, the asymptotic robustness property

depends on the asymptotic choice of the scale parameter. This indicates that asymptotic results

have only restricted impact on the finite case.

The following example shows that the estimator is either outlier robust or corner preserving in the

finite case, depending how large the scale parameter is chosen.

Figure 4: Original Image Figure 5: Noisy Image

The example, given by Smith and Brady (1995, downloaded from http://www.fmrib.ox.ac.uk/

∼steve/susan/susan.ps.gz) is a 100 × 100 pixels image with geometric figures and different kinds
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of edges and corners (see Figure 4). To each pixel, some normal distributed random noise with a

deviation of 26 (which is about 10% of the range of values, because the brightness is linearly scaled

from 0 (black) to 255 (white)) is added. In addition to the residuals which have expectation 0 and

bounded support, white colored outliers are added such that the model looks like the following:

Yij = (1 − δij)(m(xij) + εij) + δij · 255,

where δij are iid Bernoulli distributed random variables with p = 0.01, in other words δij ∼ B(0.01),

see Figure 5.

Then, the noisy image is smoothed by the estimator with a Gaussian kernel function K with

bandwidth hn = 0.02 and with a score function L with two different scale parameters. Smoothing

with scale parameter gn = 54.5 preserves corners but also the outliers (see Figure 6) while smoothing

with the scale parameter gn = 85 deletes the outliers but does not preserve the corners (see Figure

7).

Figure 6: Redescending M-
Smoother, gn = 54.5

Figure 7: Redescending M-
Smoother, gn = 85

However, the redescending M-kernel smoother can be modified such that it is both corner-preserving

and robust against outliers. The basic idea is to clean the data set from (possible) outliers before

using the M-estimate. This is done by the trimming procedure of the Least-Trimmed-Squares (LTS)

estimator introduced by Rousseuw (1984) (see also Rousseeuw and Leroy 1987). The l-trimmed

LTS-estimator is defined as

mLTS,l(x) := arg min
y∈IR







#Jn,x−r
∑

k=1

s(k)(y)






,
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where (s(k)(y))k∈{1,...,#Jn,x} is the order statistic of {sij(y) = (y − Yij)
2 : (i, j) ∈ Jn,x}, l ∈ (0, 0.5)

and r := ⌊#Jn,x · l⌋. The set of window indexes Jn,x was defined in (1).

Rousseeuw and van Aelst (1999) applied the LTS estimator to image analysis but without formal-

izing the two-dimensional regression model. A detailed model and a qualitative robustness analysis

is provided by Müller (1999 and 2002). However, the LTS estimator is not corner preserving. For

getting a corner preserving and outlier robust estimator, we do not need the LTS-estimate itself

but only the trimmed set of observations

Rn,r(x) :=
{
(i, j) ∈ Jn,x : sij(mLTS,l(x)) ≤ s(#Jn,x−r)(mLTS,l(x))

}
.

Then the so called Trimmed M-estimator or TM-smoother is basically the redescending M-

estimator based on the trimmed data set:

Definition 5 The TM-smoother mn,r(x) is defined as follows:

mn,r(x) = arg min {|y − Yi0j0| : y is element of the closure of Nn(x)}

where

Nn(x) := {y ∈ IR : y is a local minimum of − Hn,x(y) such that Hn,x(y) > 0

with y < Yi0j0 if H ′
n,x(Yi0j0) < 0

and y > Yi0j0 if H ′
n,x(Yi0j0) > 0

}

and

Hn,x(y) :=
1

n2

∑

(i,j)∈Rn,r(x)

Khn
(x − xij) L(y − Yij).

Khn
(x), L and (i0, j0) are defined as in Section 3.

In 1971, Hampel introduced a quantitative robustness measure called the breakdown point of an

estimator. It is the minimal quota of observations which can be arbitrarily biased so that the

estimator tends to ±∞. The extension of this concept to linear models can be looked up in Müller

(1997). The special case of a breakdown point in two-dimensional nonparametric regression is

defined in Müller (2002a).
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Definition 6 Let x ∈ [0, 1] and

(y)Jn,x := {yij : (i, j) ∈ Jn,x}

be the set of observations in the window Uhn
(x). Let

Yn,r,y :=
{
(z)Jn,x : zij 6= yij for at most r of the zij

}
.

Then the maximum bias of an estimator m̂n(x) by replacing r observations of (y)Jn,x
is

defined as

b
(
m̂n(x), (y)Jn,x , r

)
:= max{|m̂n(x, (y)Jn,x) − m̂n(x, (z)Jn,x)| : (z)Jn,x ∈ Yn,r,y}.

The breakdown point of m̂n(x) by replacing observations of (y)Jn,x
is defined as

ǫ∗
(
m̂n(x), (y)Jn,x

)
:= min

{
r

#Jn,x
: r ∈ IN with b

(
m̂n(x), (y)Jn,x , r

)
= ∞

}

,

and the breakdown point of m̂n(x) by replacing observations is defined as

ǫ∗ (m̂n(x)) := min
{

ǫ∗
(
m̂n(x), (y)Jn,x

)
: (y)Jn,x ∈ IR#Jn,x

}

.

Now we have the tools and definitions to prove the following

Theorem 5 Let Assumptions B1, B2, B3’, B4, B5’ hold and x ∈ (0, 1) \ ∂D. Let further r ∈ IN ,

r < #Jn,x/2 and l = r/#Jn,x. Then

ǫ∗(mn,r(x)) > l.

Applying the TM-smoother to the test image in Figure 5 leads to the result in Figure 8. Now the

corners are preserved and the outliers are deleted. Here we used a window size of 5×5 pixels and the

Gaussian density both as kernel function K (with deviation hn = 0.02) and score function L (with

deviation gn = 54.5). gn was automatically calculated as the median of the interquantile range

within the windows. The software package “epsi” contains the M-kernel smoother and the TM-

kernel smoother implemented as R-library and is downloadable from http://cran.r-project.org.

The comparison with other corner-preserving methods shows that they are not able to delete

outliers. Figure 9 provides for example the result for the adaptive weights smoother (AWS) of

Polzehl and Spokoiny (2000) which appeeared in their study as one of the best corner-preserving

methods.
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Figure 8: TM-Smoother
Figure 9: Adaptive Weights
Smoother

Method Absolute Distance Quadratic Distance

Noisy image 27.8 2025
Redescending M-smoother, gn = 54.5 16.1 609.0
Redescending M-smoother, gn = 85 19.2 662.8
TM-smoother, gn = 54.5, l = 0.15 13.9 350.9
Adaptive weights smoother 21.1 795.4

Table 1: Absolute and quadratic distance between the original and the reconstructed image

The existence of the original image gives us—in addition to the visual impression—a second cri-

terion for the performance of an estimator: it enables us to compute the absolute or quadratic

“distance” of the smoothed noisy picture to the original, i.e. n−2
∑n

i=1,j=1 |m(xij) − mn(xij)| and

n−2
∑n

i=1,j=1 (m(xij) − mn(xij))
2, respectively. In Table 1, the results for the different redescend-

ing M-kernel smoothers are given. This table also contains the corner preserving adaptive weights

smoother (AWS) of Polzehl and Spokoiny (2000).

7 Proofs

Proof of Lemma 1.

We prove Lemma 1 only for corner points x0. It is apparent that the proofs for consistency at

corner points also hold for regular points. Let, for some fixed n0 ∈ IN , the set of discontinuities

∂D ∩ Uhn0
(x0) be described by the edge curve x(t) and let t0 ∈ I such that x(t0) = x0. Let in the

following proof always assume n ≥ n0 and n0 large enough such that x0 is the only corner point in
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∂D ∩ Uhn0
.

Let bl := limtրt0 x′(t) and br := limtցt0 x′(t). Then

Tl(γ, x0) = {z ∈ IR2 : z = x0 + λ · bl, λ ∈ IR}

and

Tr(γ, x0) = {z ∈ IR2 : z = x0 + λ · br, λ ∈ IR}.

Consider the rotation of parameters Θ : IR2 −→ IR2 defined by

x 7→ x̃ :=

(

c1 c2

−c2 c1

)

x,

where

c =
bl + br

||bl + br||2
.

Recall that ||bl||2 = ||br||2 = 1 because x(t) is a natural parametrization. Θ maps c (which is the

normalized sum of the direction vectors bl, br of the asymptotic tangents of x0) onto the x̃1-axis
(1

0

)
, see Fig. 10.

x0
x̃0

Θ

Figure 10: Rotation Θ

Observe that b̃1
l > 0 and b̃1

r > 0. This is seen as follows: by the Cauchy-Schwarz inequality is

< br, br + bl > = ||br||22+ < br, bl >

≥ ||br||22 − | < br, bl > |
= 1 − | < br, bl > |
> 0.
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Hence

< br, c > = < br,
1

||br + bl||2
(br + bl)>

> 0

and, since Θ is a rotation,

b̃1
r = < b̃r,

(
1

0

)

>

= < Θ(br),Θ(c)>

= < br, c>

> 0.

b̃1
l > 0 is shown analogously.

This implies, together with the Lipschitz continuity of x′(t), that there is a neighborhood Uε(t0) of

t0 such that x̃1′(t) > 0 on Uε(t0) and hence x̃1 invertible. Then there is, with Ũ1 :=
(
x̃1
)−1

(Uε(t0)),

a function g : Ũ1 −→ IR such that g(x̃1(t)) = x̃2(t) for all t ∈ Uε(t0) and which is twice differentiable

on Ũ1 \ {x̃1
0}.

The function g can be given explicitly:

g(z) = x̃2
(
(x̃1)−1(z)

)

for z ∈ Ũ1. Hence, for z ∈ Ũ1 \ {x̃1
0},

g′(z) =
(x̃2)′

(
(x̃1)−1(z)

)

(x̃1)′ ((x̃1)−1(z))
,

and

lim
zրx̃1

0

g′(z) =
b̃2
l

b̃1
l

=: βl, lim
zցx̃1

0

g′(z) =
b̃2
r

b̃1
r

=: βr.

Since the curve is simple, there exists, for sufficient small Ũ1, Ũ2 ⊂ IR such that

{x̃(t) : t ∈ I} ∩
(

Ũ1 × Ũ2

)

=
{

(x̃1, g(x̃1)) : x̃1 ∈ Ũ1

}

and x̃2
0 lies in the interior of Ũ2. Let, without loss of generality, Θ(D) ∩ (Ũ1 × Ũ2) lie beneath

g, i.e. Θ(D) ∩ (Ũ1 × Ũ2) = {x̃ ∈ Ũ1 × Ũ2 : x̃2 ≤ g(x̃1)}. Then there is n1 ≥ n0 such that

Θ (Uhn
(x0)) ⊂ Ũ1×Ũ2 for all n ≥ n1 and hence Ḡn(x0) = D∩Uhn

(x0) = {u ∈ Uhn
(x0) : ũ2 ≤ g(ũ1)}.
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Moreover, there exist two Taylor expansions of g at x̃0:

x̃2 = g(x̃1) = x̃2
0 + (x̃1 − x̃1

0)βl + (x̃1 − x̃1
0)ηl(x̃

1 − x̃1
0) for x̃1 ≤ x̃1

0

and

x̃2 = g(x̃1) = x̃2
0 + (x̃1 − x̃1

0)βr + (x̃1 − x̃1
0)ηr(x̃

1 − x̃1
0) for x̃1 ≥ x̃1

0,

where

lim
a→0

ηi(a) = 0 for i = l, r.

Define the transformation

ϕn,x0
: Uhn

(x0) −→ [−1, 1]2

u 7−→ 1

hn
(x0 − u).

ϕ maps the window Uhn
(x0) which contains the support of the kernel function onto the (mirror)

unit square, see Fig. 11.

(1,−1)

(−1,1)(1,1)

(−1,−1)

x0 0
ϕn,x0

Figure 11: ϕn,x0

Now define

B̄n(x0) :=
{

u ∈ Uhn
(x0) : ũ2 ≤ x̃2

0 + (ũ1 − x̃1
0)
(

βl11(−∞,x̃1
0
](ũ

1) + βr11(x̃1
0
,∞)(ũ

1)
)}

.

B̄n(x0) is the area which lies, with respect to the rotated axes, “beneath” the asymptotic tangents

of x0, see Fig. 12.

Further is

ϕn,x0
(B̄n(x0)) =

{
u ∈ [−1, 1]2 : x0 − hnu ∈ B̄n(x0)

}
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Figure 12: B̄n(x0)

=
{

u ∈ [−1, 1]2 : Θ(x0 − hnu)2 ≤ x̃2
0 + (Θ(x0 − hnu)1 − x̃1

0)

·
[

βl11(−∞,x̃1
0
](Θ(x0 − hnu)1) + βr11(x̃1

0
,∞)(Θ(x0 − hnu)1)

]}

=
{

u ∈ [−1, 1]2 : x̃2
0 − hnũ2 ≤ x̃2

0 + (x̃1
0 − hnũ1 − x̃1

0)

·
[

βl11(−∞,x̃1
0
](x̃

1
0 − hnũ1) + βr11(x̃1

0
,∞)(x̃

1
0 − hnũ1)

]}

=
{
u ∈ [−1, 1]2 : −hnũ2 ≤ (−hnũ1)

·
[
βl11(−∞,0](−hnũ1) + βr11(0,∞)(−hnũ1)

]}

=
{
u ∈ [−1, 1]2 : ũ2 ≥ ũ1 ·

[
βl11[0,∞)(ũ

1) + βr11(−∞,0)(ũ
1)
]}

.

Since ϕn,x0
(B̄n(x0)) is independent of n we can rename it as

G(x0) := ϕn,x0
(B̄n(x0)).
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(0,0)

(−1,1)

(1,−1)

(1,1)

(−1,−1)

Figure 13: G(x0)

Now consider, with the Taylor expansions mentioned above,

Gn(x0) := ϕn,x0
(Ḡn(x0))
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=
{
u ∈ [−1, 1]2 : Θ(x0 − hnu)2 ≤ g(Θ(x0 − hnu)1)

}

=
{

u ∈ [−1, 1]2 : x̃2
0 − hnũ2 ≤ x̃2

0 + (x̃1
0 − hnũ1 − x̃1

0)

·
[(

βl + ηl(x̃
1
0 − hnũ1 − x̃1

0)
)
11(−∞,x̃1

0
](x̃

1
0 − hnũ1)

+
(
βr + ηr(x̃

1
0 − hnũ1 − x̃1

0)
)
11(x̃1

0
,∞)(x̃

1
0 − hnũ1)

]}

=
{

u ∈ [−1, 1]2 : −hnũ2 ≤ (−hnũ1)

·
[(

βl + ηl(−hnũ1)
)
11(−∞,0](−hnũ1)

+
(
βr + ηr(−hnũ1)

)
11(0,∞)(−hnũ1)

]}

=
{
u ∈ [−1, 1]2 : ũ2 ≥ ũ1 ·

[(
βl + ηl(−hnũ1)

)
11[0,∞)(ũ

1)

+
(
βr + ηr(−hnũ1)

)
11(−∞,0)(ũ

1)
]}

.

Define

ηmax,n :=

{

max
u∈[−2hn,2hn]

|ηl(u)|, max
u∈[−2hn,2hn]

|ηr(u)|
}

.

Since

Gn(x0)△G(x0)

⊂
{
u ∈ [−1, 1]2 :

∣
∣ũ2 − ũ1(βl11[0,∞)(ũ

1) + βr11(−∞,0)(ũ
1))
∣
∣ ≤ ηmax,n

}
,

where the symmetric difference is defined as A△B := (A \ B) ∪ (B \ A), the Lebesgue measure of

the symmetric difference can be estimated by λ (Gn(x0)△G(x0)) ≤ 6ηmax,n = o(1) if n → ∞. It

follows immediately that

∫

Gn(x0)
K(u)du =

∫

G(x0)
K(u)du + o(1),

since K is bounded. Hence, it suffices to show that

lim
n→∞




1

n2

∑

xij∈Ḡn(x0)

Khn
(x0 − xij) −

∫

Gn(x0)
K(u)du



 = 0.

Consider

IḠn
n (x0) :=

{
(i, j) ∈ {1, . . . , n}2 : xij ∈ Ḡn(x0)

}
,

IU
n (x0) :=

{

(i, j) ∈ {1, . . . , n}2 : U 1

2n
(xij) ⊂ Ḡn(x0)

}

and
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IO
n (x0) :=

{

(i, j) ∈ {1, . . . , n}2 : U 1

2n
(xij) ∩ Ḡn(x0) 6= ∅

}

.

Let further

ḠU
n (x0) :=

⋃

(i,j)∈IU
n (x0)

U 1

2n
(xij) and

ḠO
n (x0) :=

⋃

(i,j)∈IO
n (x0)

U 1

2n
(xij).

as well as

GU
n := ϕn,x0

(ḠU
n (x0))

=
{
u ∈ [−1, 1]2 : x0 − uhn ∈ ḠU

n (x0)
}

and

GO
n := ϕn,x0

(ḠO
n (x0))

=
{
u ∈ [−1, 1]2 : x0 − uhn ∈ ḠO

n (x0)
}

.

Obviously is

IU
n (x0) ⊆ IḠn

n (x0) ⊆ IO
n (x0),

ḠU
n (x0) ⊆ Ḡn(x0) ⊆ ḠO

n (x0) and

GU
n (x0) ⊆ G(x0) ⊆ GO

n (x0).

Notice that

1

n2

∑

(i,j)∈IU
n (x0)

min
u∈U 1

2n
(xij)

{Khn
(x0 − u)}

≤ 1

n2

∑

(i,j)∈IḠn
n (x0)

Khn
(x0 − xij)

≤ 1

n2

∑

(i,j)∈IO
n (x0)

max
u∈U 1

2n
(xij)

{Khn
(x0 − u)}
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as well as

1

n2

∑

(i,j)∈IU
n (x0)

min
u∈U 1

2n
(xij)

{Khn
(x0 − u)}

=
1

n2h2
n

∑

(i,j)∈IU
n (x0)

min
u∈U 1

2n
(xij)

{

K

(
1

hn
(x0 − u)

)}

≤ 1

h2
n

∑

(i,j)∈IU
n (x0)

∫

U 1
2n

(xij)
K

(
1

hn
(x0 − u)

)

du

=
1

h2
n

∫

ḠU
n (x0)

K (ϕn,x0
(u)) du

=

∫

GU
n (x0)

K(u)du

≤
∫

Gn(x0)
K(u)du

and, by the same arguments,

1

n2

∑

(i,j)∈IO
n (x0)

max
u∈U 1

2n
(xij)

{Khn
(x0 − u)}

≥
∫

Gn(x0)
K(u)du.

From

∣
∣
∣
∣
∣
∣

1

n2

∑

(i,j)∈I0
n(x0)

max
u∈U 1

2n
(xij)

{Khn
(x0 − u)}

− 1

n2

∑

(i,j)∈IU
n (x0)

min
u∈U 1

2n
(xij)

{Khn
(x0 − u)}

∣
∣
∣
∣
∣
∣

≤ 1

n2

∑

(i,j)∈IU
n (x0)

∣
∣
∣
∣
∣

max
u∈U 1

2n
(xij)

{Khn
(x0 − u)}

− min
u∈U 1

2n
(xij)

{Khn
(x0 − u)}

∣
∣
∣
∣
∣

+
1

n2

∑

(i,j)∈IO
n (x0)\IU

n (x0)

max
u∈U 1

2n
(xij)

{Khn
(x0 − u)}



Robust Corner-Preserving Image Smoothing 24

≤ 1

n2h2
n

∑

(i,j)∈IU
n (x0)

(

K

(
x0 − ξmax

ij

hn

)

− K

(

x0 − ξmin
ij

hn

))

+
1

n2h2
n

∑

(i,j)∈IO
n (x0)\IU

n (x0)
︸ ︷︷ ︸

O(n)

max
u∈[0,1]2

{K(u)} (2)

≤ 1

n2h2
n

∑

(i,j)∈IU
n (x0)

︸ ︷︷ ︸

O(n2h2
n)

C

∣
∣
∣
∣
∣

ξmax
ij − ξmin

ij

hn

∣
∣
∣
∣
∣

︸ ︷︷ ︸

O
“

1

nhn

”

+O

(
1

nh2
n

)

= O

(
1

nh2
n

)

,

where

ξmax
ij := arg max

u∈U 1
2n

(xij)
K

(
x0 − u

hn

)

,

ξmin
ij := arg min

u∈U 1
2n

(xij)
K

(
x0 − u

hn

)

and C is a Lipschitz constant of K, we have

1

n2

∑

xij∈Ḡn(x0)

Khn
(x0 − xij) =

∫

Gn(x0)
K(u)du + O

(
1

nhn

)

,

and hence the first part of the lemma follows.

Notice that the estimation of (2) follows from the fact that x(t) is—apart from a finite number of

singularities—regular and hence rectifiable. That means that x(t) has finite length and hence goes

through O(n) squares of sidelength n−1.

Finally, it has to be shown that ∫

G(x0)
K(u)du > 0.

Let α ∈ (0, 2π) be the angle between the asymptotic tangents of x0.

Since K(0) > 0 and the fact that K is continuous in 0, there is an ε > 0 such that K(u) > 0 for all

u ∈ Uε,||·||2 := {u ∈ [−1, 1]2 : ||u||2 ≤ ε}. Hence,

∫

G(x0)
K(u)du ≥

∫

G(x0)∩Uε,||·||2

K(u)du
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≥ min
x∈Uε,||·||2

K(x)

∫

G(x0)∩Uε,||·||2

du

= min
x∈Uε,||·||2

K(x)

∣
∣
∣
∣

ε2

2
α

∣
∣
∣
∣

> 0.

2

Proof of Corollary 1.

The corollary follows from the fact that we have

1

n2

n∑

i,j=1

Kp
hn

(x − xij) =
1

h2p−2
n

∫

Kp(u)du + O

(
1

nh2p−1
n

)

(3)

for p ≥ 1 and x ∈ (0 , 1)2. 2

Proof of Lemma 2.

We provide the proof only for the case x0 ∈ ∂D. The proof for x0 ∈ (0, 1)2 \ ∂D is the same, even

more simple. With Lemma 1, Corollary 1, and the Lipschitz continuity of f ′ we obtain

sup
y∈IR

∣
∣
∣
∣
∣
∣

1

n2

n∑

i,j=1

Khn
(x0 − xij)E

d

dy
Lgn(y − Yij) − f ′

d,νx0
(y − m(x0))

∣
∣
∣
∣
∣
∣

= sup
y∈IR

∣
∣
∣
∣

1

n2

∑

(i,j)∈IḠn
n (x0)

Khn
(x0 − xij)

·
∫

d

dy

1

gn
L

(
y − m(xij) − u

gn

)

f(u)du

−
∫

G(x0)
K(u)duf ′(y − m(x0))

+
1

n2

∑

(i,j)∈Jn,x0
\IḠn

n (x0)

Khn
(x0 − xij)

·
∫

d

dy

1

gn
L

(
y − µ(xij) − u

gn

)

f(u)du

−
(

1 −
∫

G(x0)
K(u)du

)

f ′(y − µ(x0))

∣
∣
∣
∣

≤ sup
y∈IR

{
1

n2

∑

(i,j)∈IḠn
n (x0)

Khn
(x0 − xij)
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·
∫

L(v)|f ′(y − m(xij) − vgn) − f ′(y − m(x0))|dv

+
1

n2

∑

(i,j)∈Jn,x0
\IḠn

n (x0)

Khn
(x0 − xij)

·
∫

L(v)|f ′(y − µ(xij) − vgn) − f ′(y − µ(x0))|dv

}

+o(1)

= o(1).

2

Proof of Lemma 3.

As in Lemma 2, we give the proof only for x0 ∈ ∂D, the most complicated case. Note that the

Lipschitz continuity of L′ implies the Lipschitz continuity of h′. With Lemma 1 and Corollary 1,

we obtain

sup
y∈IR

∣
∣
∣
∣
∣
∣

1

n2

n∑

i,j=1

Khn
(x − xij)E

d

dy
L(y − Yij) − h′

d,νx0
(y − m(x0))

∣
∣
∣
∣
∣
∣

= sup
y∈IR

∣
∣
∣
∣

1

n2

∑

(i,j)∈IḠn
n (x0)

Khn
(x − xij)h

′(y − m(xij))

−
∫

G(x0)
K(u)du h′(y − m(x0))

+
1

n2

∑

(i,j)∈Jn,x0
\IḠn

n (x0)

Khn
(x − xij)h

′(y − µ(xij))

−
(

1 −
∫

G(x0)
K(u)du

)

h′(y − µ(x0))

∣
∣
∣
∣

≤ sup
y∈IR

{
1

n2

∑

(i,j)∈IḠn
n (x0)

Khn
(x − xij)|h′(y − m(xij)) − h′(y − m(x0))|

+
1

n2

∑

(i,j)∈Jn,x0
\IḠn

n (x0)

Khn
(x − xij)|h′(y − µ(xij)) − h′(y − µ(x0))|

}

+o(1)

= o(1).

2
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Proof of Lemma 4.

The proof is the same as in the one dimensional case given by Hillebrand and Müller (2003) in

Lemma 4 using the Fourier transform of L′. The only difference is that ϕn(u) has to be defined

as ϕn(u) = n−2h−2
n

∑n
k,j=1 K

(
x−xkj

hn

)

e−iuYkj instead of ϕn(u) = n−1h−1
n

∑n
k=1 K

(
x−xk

hn

)

e−iuYk ,

where i =
√
−1. Then the condition n−1h−1

n g−2
n −→ 0 of Assumption B5 is used instead of

n−1h−1
n g−4

n −→ 0 for gn converging to zero. If gn is fixed, then it is clear that we need only

Assumption B5’. Then the result can be shown also without the Fourier transform: Since L′

is bounded because of Assumption B4’, we obtain pointwise convergence by using Chebychev’s

inequality and the property (3). Then the Lipschitz continuity of L′ and h′ imply the uniform

convergence. 2

Proof of Theorem 1.

The proof of Theorem 1 is the same as in the one dimensional case given by Hillebrand and Müller

(2003). In particular it is based on Lemma 2 and Lemma 4. For fixed gn, the proof is same as

for gn → 0 if f is replaced by h and Lemma 3 is used instead of Lemma 2. See also the proof of

Theorem 2. 2

Proof of Theorem 2.

We prove the theorem only for the case that the scale parameter gn is converging to zero. The

proof for the case with fixed scale is the same if fd,νx0
is replaced by hd,νx0

. Thereby hd,νx0
has the

same properties as fd,νx0
because of Assumptions A2’ and B4’. For that note in particular that the

support of h is (−a − b, a + b) and that h is strongly unimodal.

Observe that

f ′
d,νx0

(y)







= 0 : y ≤ a1 − d

> 0 : a1 − d < y < −d

= 0 : y = −d

< 0 : −d < y < a2 − d

= 0 : a2 − d ≤ y ≤ a1

> 0 : a1 < y < 0

= 0 : y = 0

< 0 : 0 < y < a2

= 0 : y > a2.

Hence, for all sufficient small ε′, ε1 > 0 there exists δ > 0 such that

|f ′
d,νx0

(y)| > δ

for all y ∈ [C1 ,−ε′]∪ [ε′ , C2], where C1 and C2 are chosen such that P (C1 ≤ Yx0
−m(x0) ≤ C2) ≥
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1 − ε1. Of course, a1 < C1 < C2 < a2. Lemma 2 and Lemma 4 provide that for arbitrarily small

ε2 > 0, there exists n0 ∈ IN such that for all n ≥ n0

P

(

sup
y∈IR

|H ′
n,x0

(y) − f ′
d,νx0

(y − m(x0))| ≥ δ

)

< ε2.

We conclude that, if Yx0
−m(x0) lies in [C1 , C2] and supy∈IR |H ′

nl,x0
(y)−f ′

d,νx0

(y−m(x0))| < δ, the

closest local minimum of −Hnl,x0
(y) in descent direction lies in (m(x0)−ε′ , m(x0)+ε′). Therefore,

for all nl ∈ IN with l ≥ l0 and nl0 ≥ n0,

P (|mnl
(x0) − m(x0)| > ε′)

≤ P

(

Yx0
− m(x0) /∈ [C1 , C2]

∨ sup
y∈IR

|H ′
nl,x0

(y) − f ′
d,νx0

(y − m(x0))| ≥ δ

)

≤ P (Yx0
− m(x0) /∈ [C1 , C2])

+P

(

sup
y∈IR

|H ′
nl,x0

(y) − f ′
d,νx0

(y − m(x0))| ≥ δ

)

≤ ε1 + ε2.

2

Proof of Theorem 3.

It suffices to show the claim for x ∈ (0, 1)2 \ ∂D. We will create, for arbitrarily small ε > 0, a

distribution which lies in the ε-Levy-neighborhood of P and has a multimodal density.

Let c > 0 such that
∫∞
c f(y)dy > 0. Let further δ := −f ′(c) > 0.

Consider

qε(y) :=







a
(

1 −
(
y − c − 1

2b

)2
b2
)2

if y ∈
[
c − 1

2b , c + 3
2b

]

0 else,

where a :=
√

5δ
8ε and b :=

√
32δ
45ε .

It is easily verified that qε is continuously differentiable, Lipschitz continuous, q′ε(c) = δ
ε and

∫
qε(u)du = 1. Hence

fε(y) := (1 − ε)f(y) + εqε(y)

is a density function with f ′
ε(c) = ε · δ > 0 and the corresponding distribution Pε lies in the
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qε(y)

c − 1

2b
c c + 1

2b
c + 3

2b

Figure 14: qε(y)

ε-Levy-neighborhood of P , since

|F (y) − Fε(y)| = ε · |F (y) − Gε(y)| ≤ ε,

where Gε(y) is the distribution function of the distribution Qε with density qε(y) and Fε(y) is the

distribution function of the distribution Pε.

y

y

c

0

0

c

fε(y)

f ′
ε(y)

Figure 15: fε(y) and f ′
ε(y)

Notice that f ′
ε (c + 3/(2b)) < 0 since q′ε (c + 3/(2b)) = 0 Since fε is differentiable, it has a local
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maximum between c and c + 3/(2b). For sufficient small ε > 0, c + 3/(2b) is close to c and hence

∫ ∞

c+ 3

2b

f(u)du > 0.

Since Lemmas 2 and 4 also hold for fε(y), Hn,x(y) has a local maximum in [m(x) + c, m(x) + 3/(2b)]

with a probability tending to one if n → ∞. If additionally the starting point is larger than

m(x) + c + 3/(2b), then mn(x) will be larger than m(x) + c.

Let (Qε)
mn(x) denote the distribution of the estimator mn(x) if Qε is the distribution of the resid-

uals. Then we have, if ε1 ≥ 0 is the (with n → ∞ vanishing) probability that Hn,x(y) has no local

maximum in [m(x) + c,m(x) + c + 3/(2b)],

(Qε)
mn(x)([m(x) + c,∞]) ≥

∫ ∞

c+ 3

2b

fε(u)du − ε1.

Since also, by Theorem 1,

(P )mn(x) ([m(x) + c/2,∞]) ≤ ε2,

for some ε2 > 0 vanishing as n becomes large, we have, as in Fig. 16 sketched,

dL

(

(P )mn(x), (Qε)
mn(x)

)

≥ min

{
∫ ∞

c+ 3

2b

fε(u)du − ε1 − ε2,
c

2

}

≥ min

{
∫ ∞

c+ 3

2b

f(u)du − ε − ε1 − ε2,
c

2

}

.

 

c
2

c
2

c

1−
R ∞

c+ 3
2b

fε(u)du+ε1

1−ε2

0

1

Figure 16: Distribution Functions of (P )mn(x) and (Qε)
mn(x).

2
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Proof of Theorem 4

Let Qε ∈ UL,ε(P ) and Gε its distribution function. Let further fmax := maxy∈IR f(y) and h′
Gε

(y) =
∫

L′(y − u) dGǫ(u). Because of

F (y) − fmax · ε − ε ≤ F (y − ε) − ε ≤ Gε(y) ≤ F (y + ε) + ε ≤ F (y) + fmax · ε + ε

we have

|Gε(y) − F (y)| ≤ fmax · ε + ε (4)

for all y ∈ IR. Then Assumption B4’ implies

∣
∣h′

Gε
(y) − h′(y)

∣
∣ =

∣
∣
∣
∣

∫ g

−g
L′′(u) (Gε(y − u) − F (y − u)) du

∣
∣
∣
∣

≤
∫ g

−g
|L′′(u)| |Gε(y − u) − F (y − u)| du

≤
∫ g

−g
|L′′(u)|(fmax · ε + ε) du

= C · ε,

where C :=
∫ g
−g |L′′(u)|du(fmax + 1).

Let ε1 > 0 be arbitrarily small. Let δ := min {|h′(y)| : y ∈ [−a,−ε1] ∪ [ε1, a]}. Obviously is δ > 0.

Let ε < 1
C · δ

2 . Then

sup
y∈IR

∣
∣h′(y) − h′

Gε
(y)
∣
∣ <

δ

2
.

Since Lemmas 3 and 4 also hold for Gǫ, we obtain that, for arbitrarily small ε2 > 0, there exists

n0 ∈ IN such that with probability 1 − ε2 for all n ≥ n0,

sup
y∈IR

|H ′
n,x(y) − h′

Gε
(y − m(x))| <

δ

2
.

Hence, with probability 1 − ε2 for all n ≥ n0,

sup
y∈IR

|H ′
n,x(y) − h′(y − m(x))| < δ.

This implies
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1.

H ′
n,x(y) > 0 on [m(x) − a,m(x) − ε1]

and

H ′
n,x(y) < 0 on [m(x) + ε1,m(x) + a]

2. at least one zero of H ′
n,x(y), which is a local minimum of −Hn,x(y), lies in the ε1-neighborhood

of m(x).

We conclude that, if the starting point lies in (m(xi0) − a,m(xi0) + a), the closest zero of H ′
n,x(y)

in search direction lies, for n ≥ n0, with probability larger than 1 − ε2 in [m(x) − ε1 , m(x) + ε1].

From (4) we have that the probability of the starting point lying in (m(xi0)−a,m(xi0)+a) is larger

than 1 − 2(fmax + 1)ε. Hence

(Qε)
mn(x)([m(x) − ε1,m(x) + ε1]) ≥ 1 − ε2 − 2(fmax + 1)ε.

Since, by Theorem 1,

(P )mn(x)([m(x) − ε1,m(x) + ε1]) ≥ 1 − ε2,

we have, for n ≥ n0

dL

(

(P )mn(x), (Qε)
mn(x)

)

≤ max{2ε1, ε2 + 2(fmax + 1)ε}.

2

 

1

1−ε2−2(fmax+1)ε

ε2+2(fmax+1)ε

0

m(x)−ε1 m(x) m(x)+ε1

Figure 17: Distribution Functions of (P )mn(x) and (Qε)
mn(x).

Proof of Theorem 5.

Let (y)Jn,x ∈ IR#Jn,x and set

ymin := min{yij : (i, j) ∈ Jn,x}
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and

ymax := max{yij : (i, j) ∈ Jn,x}.

Let (z)Jn,x ∈ Yn,r,y. Since at least #Jn,x − r elements of (z)Jn,x are contained in [ymin, ymax], we

have

min
y∈IR

#Jn,x−r
∑

k=1

s(k)(y) ≤ (#Jn,x − r)(ymax − ymin)
2. (5)

Let ŷ ∈ arg miny∈IR
∑#Jn,x−r

k=1 s(k)(y). Then

ŷ ∈
[

ymin −
√

#Jn,x − r(ymax − ymin), ymax +
√

#Jn,x − r(ymax − ymin)
]

since otherwise there is at least one zi0j0 with zi0j0 = yi0j0 ∈ [ymin, ymax] and

si0j0(ŷ) = (yi0j0 − ŷ)2 > (#Jn,x − r)(ymax − ymin)
2

which is a contradiction to (5). If some

zi1j1 ∈ IR \
[

ymin − 2
√

#Jn,x − r(ymax − ymin), ymax + 2
√

#Jn,x − r(ymax − ymin)
]

then si1j1(ŷ) = (zi1j1 − ŷ)2 > (#Jn,x − r)(ymax − ymin)
2 and hence (i1, j1) /∈ Rn,r(x).

This means that all zij with (i, j) ∈ Rn,r(x) lie in

[

ymin − 2
√

#Jn,x − r(ymax − ymin), ymax + 2
√

#Jn,x − r(ymax − ymin)
]

.

From the definition of mn,r(x) it follows immediately that mn,r(x) lies in the support of H ′
n,x(y)

which is not larger than

[

ymin − 2
√

#Jn,x − r(ymax − ymin) − g, ymax + 2
√

#Jn,x − r(ymax − ymin) + g
]

.

This proves the claim. 2
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