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Abstract

The aim is the prediction of the failure time of prestressed concrete beams under low
cyclic load. Since the experiments last long for low load, accelerated failure tests with higher
load are conducted. However, the accelerated tests are expensive so that only few tests are
available. To obtain a more precise failure time prediction, the additional information of
time points of breakage of tension wires is used. These breakage time points are modeled
by a nonlinear birth process. This allows not only point prediction of a critical number
of broken tension wires but also prediction intervals which express the uncertainty of the

prediction.
1 Introduction

Actual the assessment of existing prestressed
concrete bridges by means of recalculation in
conjunction with rehabilitation and strength-
ening is gaining more and more importance
compared to the construction of new bridges.
The current design codes had been devel-
oped over decades always adapting new de-
sign approaches current at that time. Even for
this reason the recalculation of older existing
structures often leads to deficiencies concern-
ing load-bearing capacity, durability and resis-
tance against fatigue. The ongoing increase
of traffic concerning heavy trucks underlines
the importance of assessment and maintenance
of the transport networks and particularly the
bridge stock, the latter with regard to struc-
tural safety.

Beside corrosion effects, the major influence
for time dependent losses of load-bearing ca-
pacity is the phenomenon of fatigue failure.
Fatigue is caused by frequent cyclic loads due
to the crossing of heavy trucks on the bridge
deck. Beside steel bridges, prestressed con-
crete bridges are affected as well, see e.g. [1],
[2]. For the design of new bridges against fa-
tigue or the assessment of existing bridges by
means of recalculation, S-N curves are needed.
The latter describe the fatigue resistance of
the materials. With regard to the prestressed
concrete bridges, this refers especially to the

embedded reinforcing and prestressing steel in
cracked sections. For the design and assess-
ment of bridges, S-N curves are needed in a
range up to 10® load cycles. To obtain values
for the whole range and for a better under-
standing of the fatigue behavior of prestressed
concrete bridges, one has to carry out long
running tests which are extremely expensive.
Hence, there is a great need to optimize these
tests procedures.

From historical view the first documented fa-
tigue tests on prestressed concrete beams will
be found in [3]. Larger test series carried out
at the University of Texas are described by [4].
Further studies can be found in [5] and [6]. A
comprehensive survey regarding fatigue tests
on prestressing steel in air and embedded in
concrete is given in [7]. The latter leads to fa-
tigue strength which is significantly less than
studied before.

During the course of the Collaborative Re-
search Center SFB 823 Statistical modeling of
nonlinear dynamic processes, large-scale test
series with stress ranges down to 50 MPa and
failure times in a range up to 10® load cycles
are carried out at TU Dortmund University.
The aim of the ongoing experimental stud-
ies described subsequently is to investigate fa-
tigue behavior and to provide characteristic S-
N curves for prestressing steel in curved steel
ducts embedded in concrete of post-tensioned



members. S-N curves belong to the basics
which are needed to verify prestressed con-
crete bridges against fatigue. However, tests
under cyclic loading of post-tensioned concrete
beams may be very time-consuming and expen-
sive. Especially at very low stress ranges with
a very high number of cycles, which are of par-
ticular interest concerning prestressed concrete
bridges, even an optimized test with a realized
load frequency of 10 Hz lasts several months.
For post-tensioned steel, an endurance range
in the S-N curves has not been established by
tests up to now. Therefore the S-N curve in the
range up to 108 cycles can only hypothetically
be guessed, until appropriate test results will
be available.

For low loads down to 60 MPa, tests in
the research project SFB 823 last nearly 100
days so that most experiments are done un-
der higher loads up to 200 MPa. Hence so
called accelerated failure tests (AFT) were con-
ducted. If there are enough AFT experiments,
the lifetime at a small load can be estimated
from the S-N curves, see e.g. [8], [9], [10]. How-
ever, here also these AFT experiments last long
and are expensive so that the results of only
few experiments are available, in our project
for example results of ten experiments. Such
small numbers of experiments are too small to
estimate the lifetime at low load with enough
precision. Nevertheless, the main interest lies
in the lifetime at low stress at 50 MPa or even
lower.

Hence, we propose here two methods which
use additional information besides the failure
times of former tests to predict the failure time
at low stress. The additional information is
given by a degradation measure. Usually the
sizes of cracks are used as degradation mea-
sures, see e.g. [11], [12], [13]. But here we
have the advantage that the time points of the
breaking of the tension wires in the prestressed
concrete beams are available since acoustic sig-
nals obtained by a microphone indicate clearly
the breakage of a wire. We model the time
points of the breaking of the tension wires with
a point process where the waiting times for the
next breaking of a tension wire follow an ex-
ponential distribution depending only on the

number of wires which are broken before. Such
point processes are also called birth processes
(see e.g. [14]).

Point processes as Poisson processes and re-
newal processes are often considered in relia-
bility and lifetime analysis, see e.g. [15], [16].
[15] treat also a linear birth process for fatigue
accumulation in Chapter 18 and uses birth
processes with time-varying intensity for crack
growth in Chapter 26. However, our birth pro-
cess is nonlinear in the number of broken ten-
sion wires. The nonlinearity is due to the re-
distribution of the load on the tension wires.
There are several approaches for load sharing
systems as those of [17], [18] or [19]. But they
assume several systems exposed to the same
stress so that accelerated failure tests cannot
be treated.

Linking the nonlinear birth process of each
experiment with its underling stress, we pro-
vide two types of prediction intervals for the
time of a critical number of broken tension
wires. The critical number of broken tension
wires has a direct relation to the failure time
of the concrete beam so that its lifetime can
be derived from the time of the critical num-
ber of broken tension wires. We use the times
between successive breaks of the accelerated
experiments and optional some first breaking
times of the concrete beam for which we want
to obtain the prediction interval.

Although prediction intervals provide not
only a prediction but also its precision, they
are often not derived. Most prediction inter-
vals are only derived for the simple situation
that all experiments are conducted under the
same conditions, see e.g. [20], [21], [22], [8], [9],
[23], [24] [25]. Only few prediction intervals for
accelerated experiments are available as those
of [8] for normal distributed lifetimes and [26]
for exponential distributed lifetimes while the
prediction intervals of [26] are based on simula-
tions. Our prediction intervals are simulation
free and thus faster to calculate.

In Section 2 the description of the experi-
ments with the concrete beams are given. Sec-
tion 3 provides the statistical model with the
birth process and its link to the stress while
Section 4 treats the two proposed prediction



intervals. The results for our experiments with
the concrete beams and some simulations are
given in Section 5. At last, Section 6 provides
a conclusion.

2 Test setup and procedure

The tests on prestressed concrete girders (here-
inafter: SB01-SB05) within the Collaborative
Research Center SFB 823 have been carried
out at TU Dortmund University. The exper-
imental setup is based on the setup of already
conducted experiments, also carried out at TU
Dortmund University (see [27]).

The series described in [27] consisted of five
concrete girders (TRO1-TRO05) with tendons
for post-tensioning. They had been tested with
different stress ranges Aoy, from 455 MPa to 98
MPa for the prestressing steel in curved steel
ducts. The prestressing steel of the tendons
used for these test girders has been taken from
an existing bridge which was built in 1957 and
demolished in 2007. Each of the taken 3/8”
strands consists of seven single wires. Each
strand had been consisted of a steel grade
St1570/1770 with a diameter of 9.3 mm and a
cross-sectional area of 52 mm?. The prestress-
ing steel had been strained at a length of 2
m for the curved tendon with a minimum ra-
dius of r = 5 m in a region of the test girder
with pure bending without shear. Hence, the
influence of fretting corrosion between the ten-
sioned strand and steel duct is included.

The experimental set-up consists of steel
frames, the concrete girder and a hydraulic
press in a four-column testing machine, which
can apply a cyclic load at maximum +/-2500
kN (see Figures 1 and 2). The overall dimen-
sions of the concrete girder are 4.00 m x 1.00
m X 0.30 m. A recess in midspan of the girder
in conjunction with a steel contact element en-
sures the unambiguous definition of the cen-
ter of the compression zone in the upper cross-
section part and from this the exact inner lever
arm and tension force in the tendon.

The test girders of the second test series
SB01-SB05 are very similar to those of the

first test series TRO1-TR05. A few modifica-
tions like a steel-link in the pressure area in the
girder’s center and the prestressing of the an-
choring rods increase the stiffness of the whole
test stand and the test frequency, whereby the
duration could be reduced. The test frequency
was set at 1.5-2 Hz for the first test series and
was optimized up to 10 Hz for the second test
series.

The experimental procedure was the same
for both test series and will be described be-
low. Firstly, all the press force was applied to
the concrete girder. The load was increased
continuously until an initial crack in the ten-
sion zone appears and a bearing effect of the
concrete in tension could be excluded. Initially
the girder has been released in a way, so that
the load could be increased up to the respec-
tive medium load range. After that, the fatigue
strength of the embedded prestressing steel was
tested under a constant cyclic loading until a
critical number of the wires had broken due
to fatigue and the remaining section could not
longer withstand the load.

During the experiment runtime, the crack
width in midspan of the girder was measured
continuously. As soon as a wire has broken due
to fatigue, the measurement of the crack width
showed a sudden increase. The amount of in-
crease depends on the total number of already
broken wires. The more wires were broken, the
greater the sudden increase was (see [7]). Al-
though the time point of the breaking of a ten-
sion wire could be determined by the sudden
increase of the crack width, a more precise de-
termination of the breaking times was obtained
with a microphone since each breaking causes
a short load noise.

It could be that more than one tension wire
is breaking at a time point. However, this can-
not be determined, neither by the crack width
nor by microphone. But this should be a rare
event so that we neglect this possibility in our
model.

The applied stress range Ao, and the time
of every broken wire in each of test girders is
shown in Figure 3.



Figure 1: Fotograph of the experimental setup
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Figure 2: 3D CAD model of the test stand
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Figure 3: Tests results for TRO1-TRO05 and SB01-SB05

3 Statistical model

Let n be the time measured in load cycles and
N, the number of broken prestressing wires
up to time n. The waiting time between the
i — 1’th and the i’th broken wire is defined as
AN; :=min{n : N, > i} —min{n : N} > i—1}.
The exponential distribution is commonly used
to model lifetimes. Hence, we assume that
AN; ~Exp(Mg(i—1,s)), i=1,...,1 < Ipax,
where \g(i — 1, s) is the parameter of the ex-
ponential distribution, which depends on the
number of broken wires 7 and the stress range
s := Aoy, of the experiment. I, denotes the
maximum number of possible wire breakages,
so that we have I,,x = 35 here, because there
are five strands with seven wires each embed-
ded in a beam.

Note that N, is the classical Poisson process
if Ay does not depend on the number ¢ of bro-
ken tension wires. If it depends on i it is birth
process, see e.g. [14].

A simple assumption for A\g(i — 1, ) in the
experiments with prestressed concrete is

(i, 8) == he <s.

Imax )

—1

for a function hgy which depends on 6 € ©.
The term % expresses the increase of stress
on the remaining I, — ¢ wires when ¢ wires
are broken. In particular, when the half of the
wires are broken (i = Ipax/2) then the stress
is doubled. The function hy models the depen-
dence of the waiting time for the next breakage
on the stress of the remaining tension wires. In
this work we choose

hg(x) := exp(—61 + 03 log(z)),
with 0 = (61,02)T € © = [0,00)? so that

Imax

o (E(AN) = 1ot (55 )

= 01—92'10g<5'

Irnax
Ipax —1+1)7
i.e. it is assumed that the expected time un-
til the next wire break can be modeled in that



way. This model for the logarithmized expec-
tation coincides with a well-known and used
model in the engineering sciences from [28].

Since we do not only have one experiment
with one stress level s but J experiments with
different stress ranges s1, ..., s, we observe re-
alizations An, ; of

ANi’j ~ EXp()\g(i — 1, Sj))

fori=1,...,1; <Ipax,j=1,...,J.
For the prediction we have a new beam ex-
periment with realizations An; o of

ANi,O ~ EXp()\g(i — 1, 80))

with i = 1,..., Iy << Ipax. We use Iy = 0 if
no observations of broken tension wires is avail-
able for this experiment. In particular, our aim
is also to make predictions for low stress lev-
els where no experiments were conducted up to
now.

Let I.it denote a critical number of bro-
ken tension wires which is closely related to
the lifetime of the concrete beam. Then we
want to predict the time of the I th failure
(Io < Igit < Imax), i.e. the time measured in
load cycles given by

An1,0+~ : ‘+Anfo,0+ANfo+1,0+' : '+ANIcrit’O'

Since Anqy,...,Ang, o have already been ob-
served, the task reduces to the prediction of
the future sum of waiting times

ANfut = ANIO-I—I,O + -+ AN]

crit;0°

(1)

4 Prediction intervals

If the parameter 6 = (61,602)” is known then
the prediction for the expected time (number
of load cycles) until the number of broken ten-
sion wires attains the critical number It is

AnLO + -+ Anjmo
1 1

_i_i _"_ P + -
o (Lo, s0) Ao (Lerit — 1, 50)

since the expectation of random variable
AN;o with exponential distribution satisfies

1
E(ANio) = =107

However, such a point prediction will usually
fail the true future time. To include the preci-
sion of the prediction, a prediction interval for
ANpy, and thus for Ang g+ - -+ Ang, 0+ ANpy
is needed. A (1 — «)-prediction interval P for
the future value of ANgy; should satisty

P(ANp; €P) > 1 —a,

where « is usually a small value like @ = 0.1.
It means that the future observation ANg; lies
in the prediction interval P with a probability
greater than 1 — o, e.g. 90% if a = 0.1. The
smaller « is and thus the larger 1 — « is, the
larger and more noninformative the prediction
interval is. Therefore a = 0.1 is a good choice
since the probability is at least 90% that the
prediction interval includes the future observa-
tion.

In order to find a prediction interval for
A Npyt, the distribution of ANp, in Expression
(1) is needed. As ANy, is the sum of expo-
nential distributions each with a different pa-
rameter, it is hypoexponential distributed (see
e.g. [29], pp.293) with cummulative distribu-
tion function

(2)

FANg 0(Angut)

Icrit
= Z al(e)(l - exp(—An)\e(z - ia 80)))7
i=Ip+1
ITerig Ao (k,s
where a;(f) = Hk:}o-&-l,k;éi Ag(k,sig—)\(z;)(i,so)'

Expression (3) can be numerically instable if it
is implemented directly and I, — Iy is large or
the parameters )y of the single exponential dis-
tributions do not differ much. In this case [30]
provide a more stable implementation based on
the matrix exponential (see [31]).

An a-quantile b, () of the hypoexponen-
tial distribution can be computed implicitly by
solving

FANgy, 0(ba(0)) —a = 0.

Hence, if the parameter 8 is known then

is a prediction interval for ANpt since

P(ANp €P) =1 —q.



However, the parameter 6 = (61,602)7
is not known in practice and has to
be estimated from the data Ang =
(Anlvo, ce ,An[mo, ey A’I”LLJ, ey An[J’J)
given by the experiments. A commonly used
estimator for # is the maximum likelihood es-
timator

0 c arg max fp an(Anan),

9o
where
J
foan(Anan) = T TT Froti,s;) (Aniy)
j=01i=1

is the density of the distribution of all data
and fy(An) := Xexp(—AAn) is the den-
sity of the exponential distribution. The
density fgan(Anan) is given as the product
of the single densities f),(;;)(An; ;) because
ANL(),...,AN[O,(),.. . ,ANLJ,...,AN[JJ are
stochastically independent.

Having an estimator 0 for 0, the prediction of
the time of the critical number I of broken
tension wires is

Anig+ -+ Ang o
1

1
+ ot
)\é(lcrit -1, 30)

A (Lo, 80)
If # is unknown, then the prediction interval
for the future A Ng, must depend on the avail-
able data An,; which is a realization of the
random vector AN,. Hence, it is a function
P(Angy) of Angy and it is an exact prediction
interval if Pg(ANpyy € P(ANgy)) > 1 — « for
all possible . That means for different real-
izations An,y, we get different prediction in-
tervals. A naive prediction interval for ANgy
is given by (see [9])

Pi= [bs(0),b15(0)] (3)
where 6 is the maximum likelihood estimator.
This is an approximate (1 — «)- prediction in-
terval only for large sample sizes, because it
does not include any information about the un-
certainty of the estimation. For a small number
of observations the coverage probability may

differ drastically from 1 — « (see [9], p.294).
We will analyze this in a simulation study in
Section 5.

To include the uncertainty of the estimator
é, a confidence interval for 6 can be used. A
(1 — «a)-confidence interval C for 6 depends
also on the available observation vector Angy
and satisfies P(6 € C(ANa)) > 1 — a for all
0 € ©. A (1 — a)-confidence set for § can be
derived using a likelihood ratio test (see e.g.
[32], pp.409). It is given by

~ . . f€7all(Anall) 2
C:.= {9 : 210g (fé@]l(Anall)) < X2,1a} )
(4)
if X%,l—a is the (1 — a)-quantile of the x? distri-
bution with 2 degrees of freedom, because we
consider 0§ = (61,05), i.e. two parameters have
to be estimated.
It is possible to use the (1 —a)-confidence set
C in Expression (4) to include the uncertainty
of the estimation. A (1 — 2a)-prediction inter-
val which is also valid for smaller sample sizes
is then given by

P:.= U [ba/g(e),b1—a/2(9)]
6eC

()

- |:m1£1 ba/2(9)7ma} bl—a/2(9) )
0eC 0eC

i.e. for all @ € C the corresponding quantiles
of the hypoexponential distribution are com-
puted. The minimum over all lower quantiles
b% and the maximum over all upper quantiles
bl,% is then the desired 1 — 2« prediction in-
terval for ANgy.

5 Results

We now apply the proposed methods to the
data from the ten experiments described in
Section 2. Figure 4 shows the fitted expecta-
tion of the logarithmized waiting times when
the Basquin link function from Section 3 is
used. The relation between the increasing
stress on the gradually breaking wires and the
waiting time is adequately modeled by this
function as it is tends to infinity for a stress
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Figure 4: Fitted expectation of the logarithmized waiting times using the Basquin link function

near 0 and fits the majority of observed wait-
ing times. For the comparison of the two pre-
diction methods, we use the beam SB03 as an
example, because with an initial stress range of
60 MPa it is the most interesting one for real
applications. In this experiment 18 wire breaks
could be observed until the complete failure of
the beam. The time of this 18th failure can
be predicted if the corresponding observation
is removed from the dataset.

In Figure 5, 90%-prediction intervals for this
last wire break are shown where a different
number of previous broken wires from the same
experiment and all observations from the other
experiments are used. The fewer observations
from SBO03 are used the more wire failures have
to be predicted. Hence, the prediction intervals
are larger and get smaller when less breakages
are predicted. The naive intervals are always
smaller than the ones based on the likelihood

ratio approach but the true time of the beam’s
complete failure is not always covered by the
naive intervals, where this is only once the case
for the likelihood ratio method. It is obvious
that the prediction task is simpler when less
wire breaks have to be predicted.

To further check the performance of the two
proposed prediction methods, we consider a
simulation study. For this, we consider three
experiments with initial stress ranges s; = 200
MPa, so = 100 MPa and s3 = 80 MPa. Six
wire breaks are simulated for each of the three
experiments by using the Basquin link function

)\G(iv S)
Imax
‘= exp <—91+9210g (S'I —i>>’

with Imax = 35 and 0 = (28.163551, 2.922285) 7,
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which is the maximum likelihood estimator
from the real data of the SFB-project.

Furthermore we generate three wire failures
of an additional experiment with sy = 60 MPa.
For this additional beam, the time of the sixth
wire break is predicted using only the first
three failure times. This is done with 90% pre-
diction intervals via the naive and the likeli-
hood ratio approach. Hence, in this first sce-
nario there are ny = 21 observations to es-
timate the parameter 8 and to compute the
95% confidence set based on the likelihood ra-
tio test. The sample size is then subsequently
increased by sampling repetitions of the first
three experiments, so that all scenarios have
J; = 1 - 18 + 3 observations for [ = 1,...,50.
This results in an maximum considered sam-
ple size of J59 = 903.

For each scenario, we check if the simulated
time of the sixth breakage which has been
removed before the estimation is covered by
the two prediction intervals and compare the
length of the intervals. This procedure is repli-
cated 1000 times for each scenario to get mean-
ingful estimations of the coverage rates and the
interval lengths.

The left-hand figure of Figure 6 shows the
coverage rate over the 1000 replications. It can
be seen that for small sample sizes the naive
method does not provide a valid prediction in-
terval as the coverage rate is much lower than
90%. With increasing sample size, the coverage
rate is converging to 90% though. The likeli-
hood ratio approach leads to valid prediction
intervals even for a very small number of ob-
servations but the resulting intervals are con-
servative and tend towards a 95% coverage rate
instead of 90%. The intervals based on the con-
fidence sets are always larger than for the naive
method because it uses the quantiles b0,025(9~)
and b0,975(9~) with 6 € @, whereas the naive
interval uses the smaller quantiles bg,05(é) and
60,95(9) based on the maximum likelihood es-
timator 0. With increasing sample size, the
(1 — a)-confidence set C becomes smaller until
it only contains the maximum likelihood es-
timator. In this case the 90% interval based
on the likelihood ratio confidence set coincides
with the naive 95% prediction interval.

The average lengths of the 1000 prediction
intervals for all considered scenarios are de-
picted in the right-hand figure of Figure 6.
For small sample sizes the prediction intervals
based on the confidence sets are much larger
than the naive ones but they get smaller when
the number of observations is increased. In
Scenario ¢ = 27 with 489 observations and all
following ones the confidence sets only consists
of the maximum likelihood estimator. Hence,
the average length of the intervals cannot de-
crease further. Since the naive prediction in-
terval only depends on the maximum likeli-
hood estimator, the average lengths do not
vary much for this method in the simulation
study.

Summarizing the results of the simulation
study, it was shown that for small sample sizes
the naive method leads to invalid prediction in-
tervals with too low coverage rates. In this sit-
uation the approach based on confidence sets
using likelihood ratio tests can be used. For
moderate and large samples, the naive predic-
tion intervals are valid though. The prediction
intervals based on the confidence sets tend to
be conservative as their coverage rate was al-
ways above the chosen level of 90%. However,
in praxis there often times are only a few ex-
periments due to the immense costs in time
and material, so that the confidence set based
method is nevertheless a plausible choice.

6 Conclusion

The two proposed methods for predicting the
failure time of prestressed concrete beams are
based on predicting the time when a critical
number of tension is broken. One method is a
naive method using only the maximum likeli-
hood estimator. The other method uses con-
fidence sets given by the likelihood ratio test.
Both methods are based on the waitings times
between successive breakages of wires. This is
possible since the time points can be measured
quite precisely with a microphone. Using all
available waitings times increase the number of
observations substantially which is in particu-
lar important when only few experiments with

10



concrete beams can be conducted. Since the
number of observations is increased, reason-
able prediction intervals can be derived which
provide the uncertainty of the prediction. Al-
though a quite simple model of the dependence
of the waiting times on the number of ten-
sion wires is used, it is shown that both meth-
ods provide reasonable results using ten ex-
periments with concrete beams. A simulation
study however shows that the naive method
should be used with caution if the number of
observations is low. The simple model which
was used does not take into account any dam-
age accumulation. To include damage accumu-
lation, the waiting times should depend on the
waitings times observed before and should have
a Weibull distribution with increasing hazard
rate. However, it is up to now unclear how
to get the estimators, predictors and predic-
tion intervals then since the independence of
the waiting times is not satisfied anymore.
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