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Abstract

A general approach for developing distribution free tests for general linear models
based on simplicial depth is presented. In most relevant cases, the test statistic
is a degenerated U-statistic so that the spectral decomposition of the conditional
expectation of the kernel function is needed to derive the asymptotic distribution.
A general formula for this conditional expectation is derived. Then it is shown
how this general formula can be specified for polynomial regression. Based on the
specified form, the spectral decomposition and thus the asymptotic distribution
is derived for polynomial regression of arbitrary degree. An application on cubic
regression demonstrates the applicability of the new tests and in particular their
outlier robustness.
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1 Introduction

Simplicial depth for multivariate location was introduced by Liu (1988, 1990). It is based
on the half space depth of Tukey (1975). Both depth notions lead to a generalization of the
median for multivariate data which is equivariant with respect to affine transformations.
Moreover the concept of depth is useful to generalize ranks.



The simplicial depth has the advantage that it is an U-statistic so that in principle the
asymptotic distribution is known. However, it is not easy to derive the asymptotic distri-
bution. Arcones et al. (1994) derived the asymptotic normality of the maximum simplicial
depth estimator of Liu (1988, 1990) via the convergence of the whole U-process. The con-
vergence of the U-process was also shown by Diimbgen (1992). However the asymptotic
normal distribution has a covariance matrix which depends on the underlying distribu-
tion. Hence this result cannot be used to derive distribution-free tests. Liu (1992) and
Liu and Singh (1993) proposed distribution-free multivariate rank tests which generalize
the Wilcoxon’s rank sum test for two samples. While the asymptotic normality is derived
for several depth notions for distributions on IR!, it is shown only for the Mahalanobis
depth for distributions on IR*, k > 1. Hence it is unclear how to generalize the approach
of Liu and Singh to other situations.

Several other depth concepts were introduced since Tukey (1975). See for example the
book of Mosler (2002) and the references in it. Multivariate depth concepts were trans-
ferred to regression by Rousseeuw and Hubert (1999), to logistic regression by Christmann
and Rousseeuw (2001) and to the Michaelis-Menten model by Van Aelst et al. (2002). The
depth concept for regression bases on the notion of nonfit introduced by Rousseeuw and
Hubert (1999). Thereby, a regression parameter 6 is called a nonfit, if there is another pa-
rameter 6 which provides for all observations z, smaller squared residuals r(z,,0")?. The
depth of a regression parameter 6 is then given by the minimum number of observations
which must be removed so that 6 becomes a nonfit.

More general concepts of depth were introduced and discussed by Zuo and Serfling
(2000a,b) and Mizera (2002). Mizera (2002) in particular generalized the regression depth
of Rousseuw and Hubert (1999) by basing the nonfit on general quality functions instead
of squared residuals. Using these quality functions, he introduced the ”global depth”, the
"tangent depth” and the ”local depth” and gave a sufficient condition for their equality.
This approach makes it possible to define the depth of a parameter value with respect to
given observations in various statistical models via general quality functions. Appropriate
quality functions are in particular likelihood functions as studied by Mizera and Miiller
(2004) for a depth notion of location and scale and by Miiller (2005) for a depth notion
for generalized linear models.

As for multivariate location, there exist only few results concerning tests based on
regression depth and its generalizations. Bai and He (1999) derived the asymptotic dis-
tribution of the maximum depth estimator for regression so that tests could be based on
this. However, this asymptotic distribution is given implicitly so that it is not convenient
for inference. Van Aelst et al. (2002) derived an exact test based on the regression depth
of Rousseeuw and Hubert (1999) but did it only for linear regression. Miiller (2005) de-
rived tests by using the simplicial regression depth which generalizes Liu’s (1988, 1990)
simlicial depth to regression.

A general simplicial depth for a ¢ dimensional parameter # within a sample z =



(z1, ..., 2n) can be defined by

d5(0,2)2< N )1 > Yo(Znrs -5 ),

+1
q 1<ni<ne<...<ng4+1<N

where the symmetrical kernel function 1y € Lo ;1;11 PQZ ') is an indicator function which
equals one if the depth d(0, (zn,, ..., 2n,.,)) of 0 in 2,,,..., 2,,,, is greater than zero.
If the depth d is the regression depth, the general simplicial depth is called simplicial
regression depth.

Miiller (2005) proposed to base the test statistic directly on the general simplicial depth
dg. For testing a hypothesis of the form Hj : 6 € Og, where Oy is an arbitrary subset of the
parameter space, the test statistic is defined as T'(zy,...,2n) = supyee, To(21, - - -, 2N)-
Thereby Typ(z1, ..., 2y) is defined as

\/N<d5(97 (217 SR ZN)) — M@)
(g+1) o9

if ds(f,2) is not a degenerated U-statistic, i.e. g(21) := EWe(Z1, ..., Zg11)|Z1 = 21)

depends on z;, and

To(z1,...,2n) == N (ds(0, (z1,...,2N)) — o), (1)

if dg(0, z) is a degenerated U-statistic. The null hypothesis Hy is rejected if T'(zq,. .., zn)
is less than the a-quantile of the asymptotic distribution of Ty(Z;, ..., Zy). Thereby the
quantities py and oy are defined as pg = E(p(Z1, ..., Zy1)) and of = Var(vg(Zy)).

Tg(zl, Ce ,ZN) =

bl

Unfortunately, the simplicial depth dg is a degenerated U-statistic in the most inter-
esting case, that the true regression function is in the center of the data, which means
that the median of the residuals is zero. Whereas nondegenerated U-statistics are asymp-
totically normal distributed, simple asymptotic results are not possible for degenerated
U-statistics. In the degenerated case, the asymptotic distributions can be derived by us-
ing the second component of the Hoeffding decomposition. We have namely the following
result (see e.g. Lee 1990, p. 79, 80, 90, Witting and Miiller-Funk, p. 650). If the reduced
normalized kernel function

7/13(21, z0) 1= E(Wo(Z1, ..., Zy1) — polZ1 = 21, Z2 = o) (2)

is ILo-integrable, it has a spectral decomposition of the form

Ui(z1,2) = > M=) @ilza), (3)

where the functions ¢; are ILo-integrable, normalized, and orthogonal. Then the asymp-
totic distribution of the simplicial depth is given by

o0

NS0,z 2 =) < (17 1) vz -, )



where Uy ~ N(0,1) and Uy, Us, ... are independent. In the general case, it could happen
that the eigenvalues )\; depend on the underlying parameter . However, Miiller (2005)
could show that this is not the case for polynomial regression in generalized linear models
so that the asymptotic distribution does not depend on the regression parameter.

However, Miiller (2005) was only able to find the spectral decompositions for linear
and quadratic regression in generalized linear models. These spectral decompositions were
found by solving differential equations. In this paper we derive the spectral decomposition
(3) for polynomial regression of arbitrary degree by a complete new approach.

For this approach, we use in Section 2 a rather general quality function for defining
the depth d used in the simplicial depth dg. This general quality function, called quality
function for extended linear regression, is motivated by the result of Miiller (2005) that
the tangent depth for quality functions based on likelihood functions in generalized linear
models is based on modified residuals g(y,) — x(t,) "0, where the function g is a trans-
formation of the dependent variables y,, and x is the regression function applied on the
explanatory variables ¢,. In this paper the quality function is based on h(z,) — v(2,)"0,
where z, can be z, = (yn, t,) with h(z,) = ¢(y,) and v(z,) = z(t,) but also other relations
are possible. The simplicial depth is based on the tangent depth for this general quality
function. However, this simplicial depth attain rather high values in subspaces of the
parameter space, since it does not provide convex depth contours as all simplicial depth
notions do not. This is in particular a disadvantage in testing if the aim is to reject the
null hypothesis. To avoid this disadvantage, we introduce in Section 2 a harmonized sim-
plicial depth for general linear models. This approach leads also to a method to calculate
the maximum simplicial depth under the null hypothesis. While in Miiller (2005) only
null hypotheses could be rejected for which the null hypothesis is a point or a line within
the parameter space, we are now able to treat hypotheses about arbitrary subspaces and
polyhedrals, as Wellmann et al. (2007a) showed.

In Section 3, we derive a general formula for the conditional expectation (2) for the
simplicial depth for extended linear regression models introduced in Section 2 and we show
that the asymptotic distribution can be obtained by calculating the spectral decomposition
of a function X, which only depends on the probability law of the vector product of
regressor variables. This means in particular that the asymptotic distribution of the test
statistic (1) does not depend on the unknown regression parameter. The function K is
applied to the harmonized form of the simplicial regression depth but the proofs hold also
for the unmodified form.

The general formula for I is specified for polynomial regression of arbitrary degree in
Section 4. Based on the specified formula, the spectral decomposition is derived. The
spectral decomposition is found by a Fourier series representation of a related function of
ILy[—1,1] which is used to derive the required representation of . We think that this
approach can be used to find the spectral decomposition of other simplicial depth func-
tions. In particular, Wellmann and Miiller (2007b) derived the asymptotic distribution of



the simplicial regression depth for different models of multiple regression.

Section 5 provides an application on tests in a cubic regression model. This example in
particular shows that the new tests possess high outlier robustness. All proofs are given
in Section 6.

2 Simplicial depth for extended linear regression

We assume that the random vectors 71, ..., Z are independent and identically distributed
throughout the paper. The random vectors Z,, have values in Z C IRP, p > 1. There exist
known functions v : Z — IR? and h : Z — IR so that the random variables X,, = v(Z,)
and Y, = h(Z,) satisfy

Y, =X'0+E,

for 8 € © = IR? and random error F,. Random variables are denoted by capital letters
and realizations by small letters. The value s,(0) = signg(z,) = sign(y, — z10) is
called the sign of the residual of the n-th (transformed) observation. The family P =

{P(,(Zl""’ZN V.0 ¢ O} of probability measures with © = IR? may be unknown, but for the
purpose of deriving tests, we will assume that the following assumptions hold:

o PF(Si(0) =11Xy) = - as., (5)
e  Fp(Si(0) =0/X;) =0a.s., and
. Py(Xy, ..., X, are linearly dependent) = 0.

DN | —

While the last two conditions of (5) are usually satisfied for continuous distributions,
the first condition can be satisfied by appropriate transformations v and h. In a model
satisfying (5), the following quality function can be used.

Definition 1 (Quality functions for extended linear regression) For

zn € Z take ¢, to be a function with continuous derivatives, which has its maximum
and its sole critical point in 0. Let v : Z — IR? and h : Z — IR be measurable.

Then the function

G.,:0 — R with G.,(0) := ¢., (h(z,) — v(2,)"0)

1s said to be a quality function for extended linear regression.

Mostly, one would choose the likelihood functions to be the quality functions. However,
for the resulting transformations, not always p := Py(E, > 0|X,,) = 3 is satisfied, so that
the true regression function is not in the center of the transformed data. In these cases it
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is more appropriate to choose the transformation A and v, such that p = % holds and to
define the quality functions by

G., (0) := —(h(z,) — v(z,)T0)%

Although quality functions are needed to define the tangent depth or the global depth of
Mizera (2002), the resulting depth functions do not depend on the choice of ¢, , so that

we may restrict ourselves to the simplest case ¢, (z) = —a?.

The following example demonstrates, how A and v and thus the quality function can
be obtained: For generalized linear models the observations are given by Z,, = (U,,T,)
which have density f(,(U”’T")(un, t) = fy nle(@n)=altn) ) ) fTn (t,). Although these likelihood
functions are quality functions for extended linear regression with regressors v(z,) = x(t,)
in most models for general linear regression, not always the assumption p = % is satisfied.
For example, for regression with exponential distributed dependent observations, that is,

FUnlrT=alin) (4, ) = X, exp(—Apttn) With A, = exp (—a2(t,)"0),

the approach via likelihood functions leads to Y,, = h(Z,) = log(U,,), whereas only the
1
5

transformation Y, = h(Z,) = log(log&)) leads to p =

Definition 2 (Tangent depth) According to Mizera (2002), we define the tangent depth
of 0 € © with respect to given observations zy,...,zy € Z to be

dr(0,z) = m;gl #{n: uTVQZn(G) > 0},

where G.,, ..., G, are quality functions for extended linear regression, z := (21, ..., zn) and
VG., (0) denotes the vector of partial derivatives of G, in 6.

As shown in Mizera (2002), this depth notion counts the number of observations that
needs to be removed such that there is a "better” parameter for all remaining observations.
It’s easy to see, that the tangent depth does not depend on the choice of ¢, . Furthermore,
for all # € © and for given observations zy, ..., zy € Z we have:

dr(0,2) = min#{n : 5,(0) v’ z, > 0}. (6)

u#0
As in Rousseuw and Hubert (1999) it can be shown, that the parameter space © = IRY
is divided up into domains with constant depth by the hyperplanes
H,={0e€ R :s,00)=0},n=1,...,N.

For given observations let Dom(z) be the set of all those domains. We define dr (G, 2) =
dr(0,z) for G € Dom(z) and 6 € G.



We will define the simplicial depth to be an U-statistic. If we would take the tangent
depth to be the kernel function of the U-statistic, then the simplicial regression depth
attain rather high values in subspaces of the parameter space, namely in Border(z) :=
UN_| H,. This is in particular a disadvantage if the aim is to reject the null hypothesis.
To avoid this disadvantage, we introduce a harmonized depth.

Definition 3 (Harmonized depth) The harmonized depth of 6 € © with respect to the
observations zi, ..., zy € Z is defined to be

Z/)g(Z) = min B dT<G, Z),
GeDom(z),0€G

where G is the closure of G.

Definition 4 (Simplicial depth) The simplicial depth is given by

N —1
dg(é,z) = <(]+1) Z ¢9(zn1"-'>znq+1)'

1<n, <ne<...<Ng+1 <N

This depth, which transfers the simplicial depth of Liu to regression models, is also
called a simplicial depth because it counts the fraction of simplicies that are bounded by
g + 1 hyperplanes from Hi,..., Hy and contain # as an interiour point. Algorithms for
calculating the simplicial depth are based on this view as well and are given in Wellmann
et al. (2007a). The proposed tests are based on the asymptotic distribution of this depth
notion.

3 The asymptotic distribution of the simplicial depth

The definition of tangent depth shows, that the depth of a parameter is the halfspace
depth of 0 with respect to the gradients of the quality functions. Thereby, the half space
depth of 0 with respect to given vectors r1,...,ry € IR? is defined as

dy(0,7) := m;(r)l#{n culr, >0},

where r = (r1,...,7441) (see Tukey, 1975). The next lemma is needed to derive the
conditional expectations of the kernel function, which depend only on ¢ + 1 observations,
but it can also be used to calculate the simplicial depth of a given parameter.



Lemma 1 Let rq,...,r,01 € IR? be in general position. Then dy(0,7) € {0,1} and the
following statements are equivalent:

(1) dH(07 T’) - O;
(ll) ™ ¢ RSOTQ + ...+ R§0Tq+1.

Proofs are given in the appendix. The next Proposition shows, that

1/15(21) = EWy(Z1,...,2441)| 21 = 1)

does not depend on zy, so that the simplicial depth is a degenerated U-statistic and has
asymptotically the distribution of an infinite linear combination of y2-distributed random
variables (see e.g. Lee 1990, p. 79, 80, 90, Witting and Miiller-Funk, p. 650). This
distribution depends only on the conditional expectation

¢3(21,Zg) = E(wg(zh N Zq+1)|Zl = 21, ZQ = ZQ) — E(¢9(Z1, P Zq+1)).

Proposition 1 Let 6§ € © and let z1,29 € Z, such that x1,x9 are linearly independent
and s1(0), s2(0) € {—1,1}. Then

W) = o

and |
(Pg(:clTW T3 W < 0) — 5) )

s1(0)s2(0)
901

where W := X3 x ... X Xg41 1s the vector product of Xs, ..., Xy11.

¢3(21, 22) =

With this proposition, we obtain a main result: We get the asymptotic distribution of
the simplicial depth in extended linear regression by calculating the spectral decomposi-
tion of the kernel K, defined by

1
K(z1,29) := Pp(xi W 23 W < 0) — 3 for zy, xo € IR, (7)

Note that x] W = det(z;, X3,...,X,41) for i = 1,2. The spectral decomposition is a
representation

IC(a:l,xg) = Z)\jSOj(xl)Spj(xQ) n ]Lg (PXl X PXI),

Jj=1

where (;)%2, is an orthonormal system (ONS) in L, (P*') and Ay, Ay, ... € IR. The func-
tions (;)32, are eigenfunctions and the values Aj, Ay, ... are the corresponding eigenvalues
of the related integral operator Ty, defined by

Tx : Lo(PXY) — Lo(PXY) with Txf(s) = / K(s,t)f(t) dP¥1 (t).
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The system (1;)32, defined by v;(2) = signy(z) p;(v(z)) for z € Z is an ONS in
ILy(P?) and for v we have the representation

@03(21,22) _ Sign@(zl)Sign0(22) ’C(U(Zl)7v(22))

=
- jf;; 22, sy (21, (0(21)) sigma22) (0(22)
= 2:: (1) Vi (22).
Hence, it follows by (4), that
N (ds(0, (Zl,...,ZN))_%) LE%A, (U2 -1), (8)

where Uy, Us, ... are i.i.d. random variables with U; ~ A(0,1). Furthermore, this deriva-
tion shows, that the asymptotic distribution does not depend on the underlying parameter
0, if the distribution of W does not depend on it. In the next section, this general result
is applied to polynomial regression.

4 Polynomial regression

A special extended linear regression model is the polynomial regression model of degree
r = ¢—1. In this model, the unknown parameter is 0 = (6;,...,0,)" € RY, Z C IR?, Z,, =
(Y,,T,), the vector v(Z,) := z(T,) := (1, T, ...,T)" is the regressor and h(Z,) =Y, is
the dependent variable. Because of the independence of Ti, ..., Ty, the third assumption
n (5) is equivalent to Py(Ty =t) =0 for all t € IR.

In this section, we derive the asymptotic distribution of the simplicial depth by cal-
culating the spectral decomposition of the kernel K, given in (7). While Miiller (2005)
derived it only for » = 1 and r = 2 in another way, we have now the asymptotic distribu-
tion for polynomial regression of arbitrary degree. At first, we give a simple representation
of the kernel IC, whis is obtained from (7) via the formula for Vandermonde determinants
(see the appendix).

Proposition 2 For all t1,t5 € IR we have

et o) = -2 (5 = 1P — ()

where FT1 is the distribution function of Tj.



Miiller derived the same formula for the reduced normalized kernel function 13 (see Propo-
sition 2 in Miiller 2005). Our proof is based not on 3 , but on K. This makes the proof
much shorter. It remains to derive the spectral decomposition of ', which we obtain in
the next proposition via a Fourier series representation of (3 — |z|)" in Ls[—1,1].

Proposition 3 The spectral decomposition of (3 —|s —t|)" in LL5[0,1]? is given by
]‘ " T = T .
(5 — s — t|) = 14+ 3" 2 [cos(krs) cos(kmt) + sin(kms) sin(krt)]
I=1

where for r odd

0, if 1 1s even,
(r) _
WTN - Y et (SRR f s odd,
ke{1,...,r} :
k odd
and for r even
1 P
[ GrT if 1=0,
(r) _ - > WM(—P 7r2)’%, if 1 is even andl >0,
M= ke{l,...,r} ’
k odd
L 0, of 1 is odd.

Let (¢;)jes be the ONS in IL,[0,1], given in the proof of Proposition 3, such that

(’y;r))jej are the eigenvalues, related to K (s,t) = ()51( —|s —t|)". Then the system (p;);eJ,

defined by ¢; :=1; 0 F* o 271 is an ONS in IL(P**) and we have the representation
K1, 2) = K(z(a™ (21)),2(a7" (22)))
1
= 2GR @ () — R @))])

= D (=27 ()p;(x2).

jeJ

Hence, the next Theorem holds:
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Theorem 1 If P(Y,—x(T,)"0 > 0|T,,) = 5 and T, has a continuous distribution, then the
asymptotic distribution of the simplicial likelihood depth ds(0,(Z1, ..., Zn)) for polynomial
regression 1s given by

1 oo
N (ds<e7 (Zav... Zn)) — 2—) £ 3 A (P + 2 —2)
=0

for r even and

1
B 2r+1

) = MU = 1)+ 3 AV + WE—-2)

=1

N (ds(e, (Zo 7))

for r odd, where U, Vo, Wy, Vi, W1, ... are independent random variables with standard
normal distribution and

r+2
Yoo = o
(r+2)! 2 o\_k+l
)\l = Z m(—l 7T> 2 fOT’lEW
ke{l,...,r}
k odd

The calculation of the test statistic and the critical values for any hypothesis of the form
Hy : 6 € ©y where O is a subspace of the parameter space or a polyhedron is described in
Wellmann et al. (2007a). There also a table of the critical values is given. The example
in Section 5 shows the applicability of the method for ¢ > 3, whereas in Miiller (2005)
and Wellmann et al. (2007a) examples for ¢ < 3 were given. In particular, in Wellmann
et al. an example is calculated, where the hypotheses is given by a polyhedral. There it is
also shown that the method can be used for tests in two sample problems. The examples
demonstrate that the tests are outlier robust. See also Wellmann (2007c¢).

5 Application: Test about quadratic function against
cubic function

The concentration of malondialdehyd (MDA) for 78 women twice after childbirth (IMDA
and IIMDA) at two time points was measured, to find a relation between the levels of
IMDA and IIMDA. MDA is a metabolite of lipid peroxides detectable in plasma. It was
measured as an indicator of lipid peroxidation and oxidation stress of women post partum
(after childbirth). The data came from the Clinic of Gynaecology, Faculty Hospital with
Policlinic, Bratislava-Ruzinov (Slovakia).

We assume a cubic regression model (¢ = 4) and choose t, as IIMDA and y, as
IMDA. Normality of the residuals with respect to the ordinary least square estimation

11
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— I2—quadratic function [ — deepest quadratic function (q=4)

~ ° 12-cubic function «~ ° deepest quadratic function (q=3)
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0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
IIMDA IIMDA
Figure 1: Least squares quadratic and cu- Figure 2: Deepest quadratic functions for
bic function qg=3and g =4.

was rejected (p-value< 0.001) by the x? goodness-of-fit test (function chisq.gof in S-
Plus). Assuming a cubic regression model with parameter 6 = (6, 0y, 0s,04)T € IR, we
want to test the hypothesis that the true function is quadratic. Hence, we want to test
Hy: 0 € ©y with ©g = {0 € IR* : §, = 0}. In the cubic regression model with ¢ = 4 and
04 = 0, a parameter with maximum simplicial depth is é\D =
(0.3942166, 0.150213, 0.592007, 0)" (Figure 2).

The maximal simplicial depth is supycg, ds(f, (21, ..., 278)) = 0.067 and the test statistic
is T'(z1, ..., z78) = 0.364, which is more than the 90%-quantile (see Wellmann et al. 2007a)
and hence we can not reject the null hypothesis for the significance level 10%. Thus, we
may assume a model for quadratic regression (¢ = 3). The deepest quadratic function
in the quadratic regression model is rather similar to the deepest quadratic function in
the cubic regression model (see Figure 2). Note, that also the hypothesis, that the true
function is a linear function, cannot be rejected within the model for quadratic regression
(¢ = 3), since the test statistic is 0.534, which is also more than the 90%-quantile of the
asymptotic distribution.

__ The least squares estimation within the model for quadratic regression is

0, = (—0.684688,3.043423, —1.206010)7. Within the model for cubic regression it is
6, = (0.676493, —1.739798, 3.834566, —1.602871)7 (Figure 1). Although the residuals are
not normally distributed, we tests the null hypothesis Hy : 4, = 0 against Hy : 04 # 0
by the F-test (function anova in S-Plus). The F-test provides for the null hypothesis a
p-value=0.018, so Hy : 4 = 0 is rejected. This is due to the outliers at the right hand
side and without them a quadratic or linear regression function is a good description of
the data.

12



6 Proofs

For more details of the proofs see also Wellmann (2007c¢).

Proof of Lemma 1

Since 71, ..., 74 are linearly independent, they belong to a hyperplane H with 0 ¢ H.
There is a v < 0 and a v € IR?, such that H = {v € R : vy = fy}.
Since 11, ...,y don’t belong to the half space {v € R :vTu > 0}, we have dy(0,7) < 1.
It remains to show the equivalence.

(ii)= (i): For any j =1,...,¢ + 1 let H; be the hyperplane that contains the points

(ri)ieq1,...qr1n (i}

Step 1: Thereis a j € {1,...,¢+ 1} such that 0 and r; are on different sides of H;.

Proof: Since 79,...,7¢41 is a Basis of IR, there exists 72,...,74+41 € IR such that
71 =Y2T2 + oo + Yg17g+1. Since rqy ¢ R<ory + ... + IR<gryr1 we may assume that v, > 0.
We prove that r; and 0 are on different sides of Hy, if 7o and 0 are on the same side of
H,. Hence, we have:

() 1 =yare + ... + Ygr17g1 With v > 0.

(b) There are o > 0 and fs, ..., B,+1 € IR such that
g+l
ro=r1—ar+ y, Bj(r; —r) € Reori + Hs.
j=3

From these equations we obtain two different representations of rs:

g+1
rp = (I—a-— Zﬁj)ﬁ +  Bars+ ..+ Beparesrs
=3
1 _ _
ry = oy By
72 2
Comparing the coefficients leads to
1 g+l B
0< —zl—a—Zﬁj and ﬂ:ﬁk for k=3,...,q+ 1.
"2 =3 2

13



It follows that

Yot oo Vg1 = Yo — ’7253‘ e ”725%1
q+1

= (1 —Zﬂj)

q+1
1- Eﬁj

_ j=3
— # > ]..

l—a—=3 05
j=3
With (a) we have

= (Y2 4+ 734 o+ Ygr1)r2 +Y3(rs — T2) e + Ygr1 (Tgr1 — 72)-

a1
Thus there is a A € (0,1) with: Ary € ry + Z R(r; —ry) = H,.

Hence, r; and 0 are on different sides of H 1- ThlS finishes the proof of Step 1.

Step 2: Main proof. The vectors r; and 0 are on different sides of this affine hyperplane
H;. Let v € H;. All vectors rq,...,r,1 are in the open half space R-ov + (H; —v). The
half space IRY\ (IR~ov+(H;—v)) don’t contain the vectors rq,...,7,41. Thus, dy(0,r) = 0.

(i)=(ii)
The vectors 71, ...,7411 belong to an open half space H with 0 € 0 H

= —ro...,—Tg1 € H := R\H
= R§0T27"'7R§0T61+1 C Hl
= BSOTQ “+ ...+ ]RSOTQ-H Cc H.

Because of ry ¢ H' it follows that 71 ¢ IR<ors + ... + R<org+1. O

Proof of Proposition 1

Let zi, ..., 2z, € Z, such that z1, ..., z,, are linearly independent and s,, := s,(0) # 0 for
n=1,...,m, where m < ¢q. Let be

X = (Xpg1, - Xgp1),

Z' = (21, Zm, m+1,...,Zq+1),

X = v(2),
X = {(@mi1s -, Tgr1) € X1 1 each subset of g vectors from zy, ..., x,44is lin. indep. },
Xeo = {(@my1, s Tgr1) € Xgp : ISty ooy Sq1 € {—1,1} 1 du (0, (5121, ..., Sq+1%g41)) = 1}
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We have to calculate E(1g(Z1, ..., Zgy1)|Z1 = 21, o Zin = 2m) = E(Ye(Z')).
Since P(X € X,,) = 1 and P(¢y(Z') € {0,1}) = 1, we have

E(g(Z") = P(4e(Z') = 1and X € X,,).

Because of {¢y(Z') =1} N{X € X,,} € {X € X..},
it follows that
EWe(Z") = P(y(Z') = 1and X € X.,,).

For 7y, ...,7q41 € IR? let o, )y :42,...,q+ 1} — {—1,1}, such that

..........

Since g, ..., T, are fixed, we can write 0z = O(4y,..201) fr T = (Tmi1, .., Tgr1) € Xgp.

-----

Now, we prove that
P(Wy(Z")=1land X € X.p) = P(Vn=m+1,...,q+ 1 :signy(Z,) = 0¢(n), X € Xz }.

Therefore let 2,41, ..., 2441 € Z With T := (Tyg1, .., Tgt1) € Xea-

Since T € X,, there are S;,41, ..., Sg+1 € {—1,1} with dg (0, (s121, ..., Sgr1T441)) = L.
With Lemma 1 it follows that s;x; € R<psoxa + ... + IR<0Sg+1%g+1-

Hence, the definition of oz implies that

$p = 0z(n) for n=2,...,m. 9)
Furthermore, we have
iﬂg(z) =1
0 ¢ N H,y and dr(h,2) = 1

=
& osigng(z,) #0forn=1,...,q+ land dr(0,2) =1
& signg(z,) #O0forn=1,....,¢+ Land dy (0, (s1(8)z1, ..., Sg+1(0)T441)) =1
et signg(z,) # 0forn=1,...,¢+ 1 and

signg(z1)z1 € IR<psigng(z2)xa + ... + R<osigng(z4+1)Tq+1

& Vn=2,..,q+1:signyg(z,) = 0z(n)
¥ Vn=m+1,..,q+ 1:signy(z,) = oz(n).

Hence,

E@Wye(Z)) = PNn=m+1,..,q+1:signg(Z,) =o05(n), X € Xez)
= / P(Vn=m+1,..,q+1:signgZ,) = 0:(n)| X = &) dP~ (7).
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Since (signg(Zmi1), ..., signg(Zy41)) and X are independent, it follows, that

E(We(Z')) = / P(Vn=m+1,...,q+1:signy,(Z,) = 0z(n)) d PX(z)

q+1 ~

_ /X [ Psigng(Za) = 0s(n)) d PX(3)

er n=m+1

L) e

_ <1>q“m P(X € X..).

For m = 1 we have X,, C X,, and thus ¢j(z1) = (1)q+1_1 P(X € X.,) = 4.

2 24
It remains to prove the second equation. Therefore, let m = 2.

Let x3,...,x441 € X, such that (x3,...,2441) € Xy and let w := 23 X ... X £441. Then
we have

(Ila e xq—l—l) € Xe:v

v
o

S 3ss, e Ser1 € {—1,1} 1 du (0, (5121, ..oy Sqg1Tg41)) = 1
Prep-d s, ..y Sgr1 € {—1,1} : s121 € ReoSa2 + ... + ReoSq1%4+1
& do,8>0,3IN€ RN #0: (asixy + Bsaa, T3, .o, Tgp1)A =0
& do, 0> 0:det(asiz1 + G222, T3, ..y Tgt1) =0
& Ja,B>0: (asir) + Bsexs)Tw =0
& Ja,f>0:as 0t w+ Bsriw =0
& sign(sirfw) = —sign(syri w)
& ssriwraw < 0.

Note, that the equation

1—s

2

P(sU < 0) = sP(U < 0) +

holds for each IR-valued random variable U with P(U = 0) = 0 and s € {—1,1}. It
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follows that

Vi(21,22) = EWe(Z')) — E(the)

1 q+1-2 _ 1
= | = P(X e X,.,)— —
(2) (X eXe) =5
N\ 1
= (5) P(SlsgI?WZEgW < O) — ﬁ
1 -1 T T 1— S1S2 1
= |3 (s189P(xy Way, W < 0) + 5 ) — 5

s189(P(xTWalw < 0) — %)
2¢-1 '

Proof of Proposition 2
Note, that the equation

(1—2P(U, < 0)N

N —

a 1
P(IJu; <o) =5
j=1

holds for N € IN and i.i.d. IR-valued random variables Uy, ..., Uy with P(U; = 0) = 0.
Since the occurring determinants are Vandermonde determinants, we have for
all t1,ty € IR:

K(x(ty), 2(t2))

= P(z(t)"(Xz X .. x Xgp1) 2(t2) T (X3 x .. x Xp1q) < 0) — %
— P(det (a(tr), 2(Ty), ..., #(Tya)) - det (2(t2), 2(Ts), - 2(Tys1)) < 0) — %
= p([Im-w [T@-m o -0 [Jo-1m<0-;
Jj=3 3<i<yj<q+1 j=3 3<i<y<g+1
= P[0 - 0T ) <0) - 5
11 1

= (- 2AF () - F ()" D

Proof of Proposition 3
At first we derive the Fourier series representation of f” where f is given by

f:[—1,1]93—>f(z):%—|2\ € {—%,%}
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Since

{% cos(l ), sin(l7-): [ € JN}

is an orthonormal basis of ILs[—1, 1] and f” is with f an even function, f" can be repre-
sented only by \% and the cosine functions, i.e.

fr(z )—ao —l—Zal -cos(lmz).

Since [ is continuous and piecewise differentiable, the series is uniformly convergent so

that
) 1 1 \/_ 1
ay’ = "(2) —=dz = 2/ "(2) dz
0= e 1)
and for [ >1
al(T): fr() cos(lm z) dz—Q/ f7(2) - cos(lmz) dz.
-1

This implies for r =1

ay’ = 0,
and for [ > 1
1 el 0, if [ is even,
al() = 2/ (——2)-Cos(l7rz)dz = (10)
0 \2 s, if 1 s odd.
For r = 2, we obtain
1/ 2 5
O{((]Q) = 2/ (_—Z> . dy = £7
o \2 V2 12
and for [ > 1
(2) 1 2 ez, if L is even,
o = 2 / (— — z) ccos(lmz)dz = (11)
0 \? 0,  iflisodd.

For r > 2, we have

9 1 /q r 9 0, if r is odd,
oz(()r) = —F= / ——z| dz = —
V2 V2 | —L ifris even,



and for [ > 1, partial integration provides the following recursion formula for al(r)

1 1 T
ozl(r) = 2 / (— - z> ~cos(lmz) dz
0 2

1 1 r1l 9 1 1 r—1
= Qﬁ sin(l 7 z) (5—2’) ) + i ; (5—2) -sin(l 7 z) dz

2r /1 T
- <§ - z) -sin(l 7 z) dz

i/
1
2 1 1 ) —1) [ /1 T2
= —iﬁ cos(Imz) (5—2) O—i <Tl7r )/0 <§—Z) ~cos(lm2) dz

o 2r 1 (~1) 1 T_l_ 1 T _Q_T(T—l)lal(rﬂ)
lmln 2 2 lm Im 2

= " [(_1>l+r71 _ 1} _r (r—1) (r—2)

o 12 72 9r—2 12 72 &

—% Oél(T_m, if [ 4+ r is odd,

PES [zr% —(r—1) Oél(rfz)} , if [+ 7 is even.

Since ozl(l) = 0 if [ is even and al@) = 0 if [ is odd, we obtain ozl(r) =0if r+1is odd. If

r+ 1 is even and [ > 1, then we have

7“' 9 9\ ktl o 2| 2 _2\—1 __ 4 _ ( )
N ke; (= AR A= TR PRk
k odd
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The induction step is done from r to r + 2, that is:

, 2 [ 1 ,
=2 |G - e al)

272 |9r-1
r -+ 2 1 7! kt1
= 1 — (-
Erel e G >HZ} 2 i)
k odd
(r+2)! (12 7T2)—1

2423 (r 42 — 1)

_ Z (r+2)! (—ZQWZ)JC%H
2r+2=(k+2)=2(p + 2 — (k + 2))!

_ (r+2)! 2 2\—kHL
- Z 2r+2—k—2(r+2_k)!(_l )

ke{l,...,r4+2}

k odd

Hence, we always have ao = V24 27, ) and al = 2717") for [ > 1, where 'yl() are the
quantities of Theorem 3.

To finish the proof, we transfer the Fourier series representation of f"(z) on [—1,1] to
that of g"(s,t) = f"(s — t) on [0, 1]?>. This provides

<%_|3_t|> = fr(s—t)_ogo ——i—Zal ~cos(lm (s —1))

[e.e]

1
= aéT) C—=+ Zal(r) Jecos(Ims) - cos(Imt)+sin(lms)-sin(lmt)]

V25

which is the representation given by Theorem 3 using the relation between al ) and ’Yz

The quantities 71( ") are used in Theorem 3 since only

S = {1, V2 cos(lm), V2 sin(ir); 1 € .W}

are normalized functions of 5[0, 1]. However, S is not an orthonormal system of 5[0, 1].

But, since the quantities ,Yl(r) are zero as soon as r + [ is odd, only the systems

{\/5 cos(l7-), V2 sin(l7-); 1 € IN and [ is odd} for r odd,
{1, V2 cos(Im), V2sin(ln); 1 € IN and [ is even} for r even,

are relevant and these are orthonormal systems of 5[0, 1]. O
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