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Abstract

A general approach for developing distribution free tests for general linear models

based on simplicial depth is presented. In most relevant cases, the test statistic

is a degenerated U-statistic so that the spectral decomposition of the conditional

expectation of the kernel function is needed to derive the asymptotic distribution.

A general formula for this conditional expectation is derived. Then it is shown

how this general formula can be specified for polynomial regression. Based on the

specified form, the spectral decomposition and thus the asymptotic distribution

is derived for polynomial regression of arbitrary degree. An application on cubic

regression demonstrates the applicability of the new tests and in particular their

outlier robustness.
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1 Introduction

Simplicial depth for multivariate location was introduced by Liu (1988, 1990). It is based
on the half space depth of Tukey (1975). Both depth notions lead to a generalization of the
median for multivariate data which is equivariant with respect to affine transformations.
Moreover the concept of depth is useful to generalize ranks.
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The simplicial depth has the advantage that it is an U-statistic so that in principle the
asymptotic distribution is known. However, it is not easy to derive the asymptotic distri-
bution. Arcones et al. (1994) derived the asymptotic normality of the maximum simplicial
depth estimator of Liu (1988, 1990) via the convergence of the whole U-process. The con-
vergence of the U-process was also shown by Dümbgen (1992). However the asymptotic
normal distribution has a covariance matrix which depends on the underlying distribu-
tion. Hence this result cannot be used to derive distribution-free tests. Liu (1992) and
Liu and Singh (1993) proposed distribution-free multivariate rank tests which generalize
the Wilcoxon’s rank sum test for two samples. While the asymptotic normality is derived
for several depth notions for distributions on IR1, it is shown only for the Mahalanobis
depth for distributions on IRk, k > 1. Hence it is unclear how to generalize the approach
of Liu and Singh to other situations.

Several other depth concepts were introduced since Tukey (1975). See for example the
book of Mosler (2002) and the references in it. Multivariate depth concepts were trans-
ferred to regression by Rousseeuw and Hubert (1999), to logistic regression by Christmann
and Rousseeuw (2001) and to the Michaelis-Menten model by Van Aelst et al. (2002). The
depth concept for regression bases on the notion of nonfit introduced by Rousseeuw and
Hubert (1999). Thereby, a regression parameter θ is called a nonfit, if there is another pa-
rameter θ′ which provides for all observations zn smaller squared residuals r(zn, θ

′)2. The
depth of a regression parameter θ is then given by the minimum number of observations
which must be removed so that θ becomes a nonfit.

More general concepts of depth were introduced and discussed by Zuo and Serfling
(2000a,b) and Mizera (2002). Mizera (2002) in particular generalized the regression depth
of Rousseuw and Hubert (1999) by basing the nonfit on general quality functions instead
of squared residuals. Using these quality functions, he introduced the ”global depth”, the
”tangent depth” and the ”local depth” and gave a sufficient condition for their equality.
This approach makes it possible to define the depth of a parameter value with respect to
given observations in various statistical models via general quality functions. Appropriate
quality functions are in particular likelihood functions as studied by Mizera and Müller
(2004) for a depth notion of location and scale and by Müller (2005) for a depth notion
for generalized linear models.

As for multivariate location, there exist only few results concerning tests based on
regression depth and its generalizations. Bai and He (1999) derived the asymptotic dis-
tribution of the maximum depth estimator for regression so that tests could be based on
this. However, this asymptotic distribution is given implicitly so that it is not convenient
for inference. Van Aelst et al. (2002) derived an exact test based on the regression depth
of Rousseeuw and Hubert (1999) but did it only for linear regression. Müller (2005) de-
rived tests by using the simplicial regression depth which generalizes Liu’s (1988, 1990)
simlicial depth to regression.

A general simplicial depth for a q dimensional parameter θ within a sample z =
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(z1, ..., zN ) can be defined by

dS(θ, z) =

(
N

q + 1

)−1 ∑

1≤n1<n2<...<nq+1≤N

ψθ(zn1
, . . . , znq+1

),

where the symmetrical kernel function ψθ ∈ IL2(
⊗q+1

n=1 P
Z1

θ ) is an indicator function which
equals one if the depth d(θ, (zn1

, . . . , znq+1
)) of θ in zn1

, . . . , znq+1
is greater than zero.

If the depth d is the regression depth, the general simplicial depth is called simplicial
regression depth.

Müller (2005) proposed to base the test statistic directly on the general simplicial depth
dS. For testing a hypothesis of the formH0 : θ ∈ Θ0, where Θ0 is an arbitrary subset of the
parameter space, the test statistic is defined as T (z1, . . . , zN) := supθ∈Θ0

Tθ(z1, . . . , zN).
Thereby Tθ(z1, . . . , zN) is defined as

Tθ(z1, . . . , zN) :=

√
N(dS(θ, (z1, . . . , zN)) − µθ)

(q + 1) σθ

,

if dS(θ, z) is not a degenerated U-statistic, i.e. ψ1
θ(z1) := E(ψθ(Z1, . . . , Zq+1)|Z1 = z1)

depends on z1, and

Tθ(z1, . . . , zN) := N (dS(θ, (z1, . . . , zN)) − µθ), (1)

if dS(θ, z) is a degenerated U-statistic. The null hypothesis H0 is rejected if T (z1, . . . , zN)
is less than the α-quantile of the asymptotic distribution of Tθ(Z1, . . . , ZN). Thereby the
quantities µθ and σθ are defined as µθ = E(ψθ(Z1, . . . , Zq+1)) and σ2

θ = Var(ψ1
θ(Z1)).

Unfortunately, the simplicial depth dS is a degenerated U-statistic in the most inter-
esting case, that the true regression function is in the center of the data, which means
that the median of the residuals is zero. Whereas nondegenerated U-statistics are asymp-
totically normal distributed, simple asymptotic results are not possible for degenerated
U-statistics. In the degenerated case, the asymptotic distributions can be derived by us-
ing the second component of the Hoeffding decomposition. We have namely the following
result (see e.g. Lee 1990, p. 79, 80, 90, Witting and Müller-Funk, p. 650). If the reduced
normalized kernel function

ψ2
θ(z1, z2) := E(ψθ(Z1, . . . , Zq+1) − µθ|Z1 = z1, Z2 = z2) (2)

is IL2-integrable, it has a spectral decomposition of the form

ψ2
θ(z1, z2) =

∞∑

l=1

λl ϕl(z1) ϕl(z2), (3)

where the functions ϕl are IL2-integrable, normalized, and orthogonal. Then the asymp-
totic distribution of the simplicial depth is given by

N(dS(θ, (Z1, . . . , ZN)) − µθ)
L−→

(
q + 1

2

) ∞∑

l=1

λl (U2
l − 1), (4)
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where Ul ∼ N (0, 1) and U1, U2, . . . are independent. In the general case, it could happen
that the eigenvalues λl depend on the underlying parameter θ. However, Müller (2005)
could show that this is not the case for polynomial regression in generalized linear models
so that the asymptotic distribution does not depend on the regression parameter.

However, Müller (2005) was only able to find the spectral decompositions for linear
and quadratic regression in generalized linear models. These spectral decompositions were
found by solving differential equations. In this paper we derive the spectral decomposition
(3) for polynomial regression of arbitrary degree by a complete new approach.

For this approach, we use in Section 2 a rather general quality function for defining
the depth d used in the simplicial depth dS. This general quality function, called quality
function for extended linear regression, is motivated by the result of Müller (2005) that
the tangent depth for quality functions based on likelihood functions in generalized linear
models is based on modified residuals g(yn) − x(tn)⊤θ, where the function g is a trans-
formation of the dependent variables yn and x is the regression function applied on the
explanatory variables tn. In this paper the quality function is based on h(zn) − v(zn)⊤θ,
where zn can be zn = (yn, tn) with h(zn) = g(yn) and v(zn) = x(tn) but also other relations
are possible. The simplicial depth is based on the tangent depth for this general quality
function. However, this simplicial depth attain rather high values in subspaces of the
parameter space, since it does not provide convex depth contours as all simplicial depth
notions do not. This is in particular a disadvantage in testing if the aim is to reject the
null hypothesis. To avoid this disadvantage, we introduce in Section 2 a harmonized sim-
plicial depth for general linear models. This approach leads also to a method to calculate
the maximum simplicial depth under the null hypothesis. While in Müller (2005) only
null hypotheses could be rejected for which the null hypothesis is a point or a line within
the parameter space, we are now able to treat hypotheses about arbitrary subspaces and
polyhedrals, as Wellmann et al. (2007a) showed.

In Section 3, we derive a general formula for the conditional expectation (2) for the
simplicial depth for extended linear regression models introduced in Section 2 and we show
that the asymptotic distribution can be obtained by calculating the spectral decomposition
of a function K, which only depends on the probability law of the vector product of
regressor variables. This means in particular that the asymptotic distribution of the test
statistic (1) does not depend on the unknown regression parameter. The function K is
applied to the harmonized form of the simplicial regression depth but the proofs hold also
for the unmodified form.

The general formula for K is specified for polynomial regression of arbitrary degree in
Section 4. Based on the specified formula, the spectral decomposition is derived. The
spectral decomposition is found by a Fourier series representation of a related function of
IL2[−1, 1] which is used to derive the required representation of K. We think that this
approach can be used to find the spectral decomposition of other simplicial depth func-
tions. In particular, Wellmann and Müller (2007b) derived the asymptotic distribution of

4



the simplicial regression depth for different models of multiple regression.

Section 5 provides an application on tests in a cubic regression model. This example in
particular shows that the new tests possess high outlier robustness. All proofs are given
in Section 6.

2 Simplicial depth for extended linear regression

We assume that the random vectors Z1, ..., ZN are independent and identically distributed
throughout the paper. The random vectors Zn have values in Z ⊂ IRp, p ≥ 1. There exist
known functions v : Z → IRq and h : Z → IR so that the random variables Xn = v(Zn)
and Yn = h(Zn) satisfy

Yn = XT
n θ + En

for θ ∈ Θ = IRq and random error En. Random variables are denoted by capital letters
and realizations by small letters. The value sn(θ) := signθ(zn) := sign(yn − xT

nθ) is
called the sign of the residual of the n-th (transformed) observation. The family P =

{P (Z1,...,ZN )
θ : θ ∈ Θ} of probability measures with Θ = IRq may be unknown, but for the

purpose of deriving tests, we will assume that the following assumptions hold:

• Pθ(S1(θ) = 1|X1) ≡
1

2
a.s., (5)

• Pθ(S1(θ) = 0|X1) ≡ 0 a.s., and

• Pθ(X1, . . . , Xq are linearly dependent) = 0.

While the last two conditions of (5) are usually satisfied for continuous distributions,
the first condition can be satisfied by appropriate transformations v and h. In a model
satisfying (5), the following quality function can be used.

Definition 1 (Quality functions for extended linear regression) For
zn ∈ Z take ϕzn

to be a function with continuous derivatives, which has its maximum
and its sole critical point in 0. Let v : Z → IRq and h : Z → IR be measurable.
Then the function

Gzn
: Θ → IR with Gzn

(θ) := ϕzn
(h(zn) − v(zn)T θ)

is said to be a quality function for extended linear regression.

Mostly, one would choose the likelihood functions to be the quality functions. However,
for the resulting transformations, not always p := Pθ(En > 0|Xn) = 1

2
is satisfied, so that

the true regression function is not in the center of the transformed data. In these cases it
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is more appropriate to choose the transformation h and v, such that p = 1
2

holds and to
define the quality functions by

Gzn
(θ) := −(h(zn) − v(zn)T θ)2.

Although quality functions are needed to define the tangent depth or the global depth of
Mizera (2002), the resulting depth functions do not depend on the choice of ϕzn

, so that
we may restrict ourselves to the simplest case ϕzn

(x) = −x2.

The following example demonstrates, how h and v and thus the quality function can
be obtained: For generalized linear models the observations are given by Zn = (Un, Tn)

which have density f
(Un,Tn)
θ (un, tn) = f

Un|x(Tn)=x(tn)
θ (un)fTn(tn). Although these likelihood

functions are quality functions for extended linear regression with regressors v(zn) = x(tn)
in most models for general linear regression, not always the assumption p = 1

2
is satisfied.

For example, for regression with exponential distributed dependent observations, that is,

f
Un|x(Tn)=x(tn)
θ (un) = λn exp(−λnun) with λn = exp

(
− x(tn)T θ

)
,

the approach via likelihood functions leads to Yn = h(Zn) = log(Un), whereas only the
transformation Yn = h(Zn) = log( Un

log(2)
) leads to p = 1

2
.

Definition 2 (Tangent depth) According to Mizera (2002), we define the tangent depth
of θ ∈ Θ with respect to given observations z1, ..., zN ∈ Z to be

dT (θ, z) = min
u 6=0

#{n : uT∇Gzn
(θ) ≥ 0},

where Gz1
, ...,GzN

are quality functions for extended linear regression, z := (z1, ..., zN ) and
∇Gzn

(θ) denotes the vector of partial derivatives of Gzn
in θ.

As shown in Mizera (2002), this depth notion counts the number of observations that
needs to be removed such that there is a ”better” parameter for all remaining observations.
It’s easy to see, that the tangent depth does not depend on the choice of ϕzn

. Furthermore,
for all θ ∈ Θ and for given observations z1, ..., zN ∈ Z we have:

dT (θ, z) = min
u 6=0

#{n : sn(θ) uTxn ≥ 0}. (6)

As in Rousseuw and Hubert (1999) it can be shown, that the parameter space Θ = IRq

is divided up into domains with constant depth by the hyperplanes

Hn = {θ ∈ IRq : sn(θ) = 0}, n = 1, ..., N.

For given observations let Dom(z) be the set of all those domains. We define d̄T (G, z) :=
dT (θ, z) for G ∈ Dom(z) and θ ∈ G.
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We will define the simplicial depth to be an U-statistic. If we would take the tangent
depth to be the kernel function of the U-statistic, then the simplicial regression depth
attain rather high values in subspaces of the parameter space, namely in Border(z) :=
∪N

n=1Hn. This is in particular a disadvantage if the aim is to reject the null hypothesis.
To avoid this disadvantage, we introduce a harmonized depth.

Definition 3 (Harmonized depth) The harmonized depth of θ ∈ Θ with respect to the
observations z1, ..., zN ∈ Z is defined to be

ψθ(z) = min
G∈Dom(z),θ∈Ḡ

d̄T (G, z),

where Ḡ is the closure of G.

Definition 4 (Simplicial depth) The simplicial depth is given by

dS(θ, z) =

(
N

q + 1

)−1 ∑

1≤n1<n2<...<nq+1≤N

ψθ(zn1
, . . . , znq+1

).

This depth, which transfers the simplicial depth of Liu to regression models, is also
called a simplicial depth because it counts the fraction of simplicies that are bounded by
q + 1 hyperplanes from H1, ..., HN and contain θ as an interiour point. Algorithms for
calculating the simplicial depth are based on this view as well and are given in Wellmann
et al. (2007a). The proposed tests are based on the asymptotic distribution of this depth
notion.

3 The asymptotic distribution of the simplicial depth

The definition of tangent depth shows, that the depth of a parameter is the halfspace
depth of 0 with respect to the gradients of the quality functions. Thereby, the half space
depth of 0 with respect to given vectors r1, . . . , rN ∈ IRq is defined as

dH(0, r) := min
u 6=0

#{n : uT rn ≥ 0},

where r = (r1, ..., rq+1) (see Tukey, 1975). The next lemma is needed to derive the
conditional expectations of the kernel function, which depend only on q+ 1 observations,
but it can also be used to calculate the simplicial depth of a given parameter.
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Lemma 1 Let r1, . . . , rq+1 ∈ IRq be in general position. Then dH(0, r) ∈ {0, 1} and the
following statements are equivalent:

(i) dH(0, r) = 0,

(ii) r1 /∈ IR≤0r2 + ...+ IR≤0rq+1.

Proofs are given in the appendix. The next Proposition shows, that

ψ1
θ(z1) := E(ψθ(Z1, . . . , Zq+1)|Z1 = z1)

does not depend on z1, so that the simplicial depth is a degenerated U-statistic and has
asymptotically the distribution of an infinite linear combination of χ2-distributed random
variables (see e.g. Lee 1990, p. 79, 80, 90, Witting and Müller-Funk, p. 650). This
distribution depends only on the conditional expectation

ψ2
θ(z1, z2) := E(ψθ(Z1, . . . , Zq+1)|Z1 = z1, Z2 = z2) − E(ψθ(Z1, . . . , Zq+1)).

Proposition 1 Let θ ∈ Θ and let z1, z2 ∈ Z, such that x1, x2 are linearly independent
and s1(θ), s2(θ) ∈ {−1, 1}. Then

ψ1
θ(z1) =

1

2q

and

ψ2
θ(z1, z2) =

s1(θ)s2(θ)

2q−1

(
Pθ(x

T
1W xT

2W < 0) − 1

2

)
,

where W := X3 × ...×Xq+1 is the vector product of X3, ..., Xq+1.

With this proposition, we obtain a main result: We get the asymptotic distribution of
the simplicial depth in extended linear regression by calculating the spectral decomposi-
tion of the kernel K, defined by

K(x1, x2) := Pθ(x
T
1W xT

2W < 0) − 1

2
, for x1, x2 ∈ IRq. (7)

Note that x⊤i W = det(xi, X3, . . . , Xq+1) for i = 1, 2. The spectral decomposition is a
representation

K(x1, x2) =
∞∑

j=1

λjϕj(x1)ϕj(x2) in IL2

(
PX1 ⊗ PX1

)
,

where (ϕj)
∞
j=1 is an orthonormal system (ONS) in IL2

(
PX1

)
and λ1, λ2, ... ∈ IR. The func-

tions (ϕj)
∞
j=1 are eigenfunctions and the values λ1, λ2, ... are the corresponding eigenvalues

of the related integral operator TK, defined by

TK : IL2(P
X1) → IL2(P

X1) with TKf(s) =

∫
K(s, t)f(t) dPX1(t).
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The system (ψj)
∞
j=1, defined by ψj(z) := signθ(z) ϕj(v(z)) for z ∈ Z is an ONS in

IL2(P
Z1) and for ψ2

θ we have the representation

ψ2
θ(z1, z2) =

signθ(z1)signθ(z2)

2q−1
K(v(z1), v(z2))

=
∞∑

j=1

1

2q−1
λj signθ(z1)ϕj(v(z1)) signθ(z2)ϕj(v(z2))

=
∞∑

j=1

1

2q−1
λj ψj(z1) ψj(z2).

Hence, it follows by (4), that

N
(
dS(θ, (Z1, . . . , ZN)) − 1

2q

) L−→
∞∑

l=1

(q + 1)!

(q − 1)!2q
λl

(
Ul

2 − 1
)
, (8)

where U1, U2, ... are i.i.d. random variables with U1 ∼ N (0, 1). Furthermore, this deriva-
tion shows, that the asymptotic distribution does not depend on the underlying parameter
θ, if the distribution of W does not depend on it. In the next section, this general result
is applied to polynomial regression.

4 Polynomial regression

A special extended linear regression model is the polynomial regression model of degree
r = q−1. In this model, the unknown parameter is θ = (θ1, . . . , θq)

⊤ ∈ IRq, Z ⊂ IR2, Zn =
(Yn, Tn), the vector v(Zn) := x(Tn) := (1, Tn, ..., T

r
n)T is the regressor and h(Zn) = Yn is

the dependent variable. Because of the independence of T1, ..., TN , the third assumption
in (5) is equivalent to Pθ(T1 = t) = 0 for all t ∈ IR.

In this section, we derive the asymptotic distribution of the simplicial depth by cal-
culating the spectral decomposition of the kernel K, given in (7). While Müller (2005)
derived it only for r = 1 and r = 2 in another way, we have now the asymptotic distribu-
tion for polynomial regression of arbitrary degree. At first, we give a simple representation
of the kernel K, whis is obtained from (7) via the formula for Vandermonde determinants
(see the appendix).

Proposition 2 For all t1, t2 ∈ IR we have

K(x(t1), x(t2)) = −2r−1

(
1

2
− |F T1(t1) − F T1(t2)|

)r

,

where F T1 is the distribution function of T1.
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Müller derived the same formula for the reduced normalized kernel function ψ2
θ (see Propo-

sition 2 in Müller 2005). Our proof is based not on ψ2
θ , but on K. This makes the proof

much shorter. It remains to derive the spectral decomposition of K, which we obtain in
the next proposition via a Fourier series representation of (1

2
− |z|)r in IL2[−1, 1].

Proposition 3 The spectral decomposition of
(

1
2
− |s− t|

)r
in IL2[0, 1]2 is given by

(
1

2
− |s− t|

)r

= γ
(r)
0 · 1 +

∞∑

l=1

γ
(r)
l · 2 · [cos(kπs) cos(kπt) + sin(kπs) sin(kπt)]

where for r odd

γ
(r)
l =






0, if l is even,

− ∑
k∈{1,...,r}

k odd

r!
2r−k−1(r−k)!

(−l2 π2)−
k+1

2 , if l is odd,

and for r even

γ
(r)
l =






1
(r+1) 2r , if l = 0,

− ∑
k∈{1,...,r}

k odd

r!
2r−k−1(r−k)!

(−l2 π2)−
k+1

2 , if l is even and l > 0,

0, if l is odd.

Let (ψj)j∈J be the ONS in IL2[0, 1], given in the proof of Proposition 3, such that

(γ
(r)
j )j∈J are the eigenvalues, related to K(s, t) = (1

2
− |s− t|)r. Then the system (ϕj)j∈J ,

defined by ϕj := ψj ◦ F T1 ◦ x−1 is an ONS in IL(PX1) and we have the representation

K(x1, x2) = K(x(x−1(x1)), x(x
−1(x2)))

= −2r−1(
1

2
− |F T1(x−1(x1)) − F T1(x−1(x2))|)r

=
∑

j∈J

(−2r−1γ
(r)
j )ϕj(x1)ϕj(x2).

Hence, the next Theorem holds:
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Theorem 1 If P (Yn−x(Tn)⊤θ ≥ 0|Tn) = 1
2

and Tn has a continuous distribution, then the
asymptotic distribution of the simplicial likelihood depth dS(θ, (Z1, . . . , ZN)) for polynomial
regression is given by

N

(
dS(θ, (Z1, . . . , ZN)) − 1

2r+1

)
L−→

∞∑

l=0

λ2l+1(V
2
l +W 2

l − 2)

for r even and

N

(
dS(θ, (Z1, . . . , ZN)) − 1

2r+1

)
L−→ λ0(U

2 − 1) +
∞∑

l=1

λ2l(V
2
l +W 2

l − 2)

for r odd, where U, V0,W0, V1,W1, . . . are independent random variables with standard
normal distribution and

λ0 = −r + 2

2r+2
,

λl =
∑

k∈{1,...,r}

k odd

(r + 2)!

2r−k+1(r − k)!
(−l2 π2)−

k+1

2 for l ∈ IN.

The calculation of the test statistic and the critical values for any hypothesis of the form
H0 : θ ∈ Θ0 where Θ0 is a subspace of the parameter space or a polyhedron is described in
Wellmann et al. (2007a). There also a table of the critical values is given. The example
in Section 5 shows the applicability of the method for q > 3, whereas in Müller (2005)
and Wellmann et al. (2007a) examples for q ≤ 3 were given. In particular, in Wellmann
et al. an example is calculated, where the hypotheses is given by a polyhedral. There it is
also shown that the method can be used for tests in two sample problems. The examples
demonstrate that the tests are outlier robust. See also Wellmann (2007c).

5 Application: Test about quadratic function against

cubic function

The concentration of malondialdehyd (MDA) for 78 women twice after childbirth (IMDA
and IIMDA) at two time points was measured, to find a relation between the levels of
IMDA and IIMDA. MDA is a metabolite of lipid peroxides detectable in plasma. It was
measured as an indicator of lipid peroxidation and oxidation stress of women post partum
(after childbirth). The data came from the Clinic of Gynaecology, Faculty Hospital with
Policlinic, Bratislava-Ružinov (Slovakia).

We assume a cubic regression model (q = 4) and choose tn as IIMDA and yn as
IMDA. Normality of the residuals with respect to the ordinary least square estimation
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Figure 1: Least squares quadratic and cu-
bic function
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Figure 2: Deepest quadratic functions for
q = 3 and q = 4.

was rejected (p-value< 0.001) by the χ2 goodness-of-fit test (function chisq.gof in S-
Plus). Assuming a cubic regression model with parameter θ = (θ1, θ2, θ3, θ4)

T ∈ IRq, we
want to test the hypothesis that the true function is quadratic. Hence, we want to test
H0 : θ ∈ Θ0 with Θ0 = {θ ∈ IR4 : θ4 = 0}. In the cubic regression model with q = 4 and

θ4 = 0, a parameter with maximum simplicial depth is θ̂D =
(0.3942166, 0.150213, 0.592007, 0)T (Figure 2).

The maximal simplicial depth is supθ∈Θ0
dS(θ, (z1, ..., z78)) = 0.067 and the test statistic

is T (z1, ..., z78) = 0.364, which is more than the 90%-quantile (see Wellmann et al. 2007a)
and hence we can not reject the null hypothesis for the significance level 10%. Thus, we
may assume a model for quadratic regression (q = 3). The deepest quadratic function
in the quadratic regression model is rather similar to the deepest quadratic function in
the cubic regression model (see Figure 2). Note, that also the hypothesis, that the true
function is a linear function, cannot be rejected within the model for quadratic regression
(q = 3), since the test statistic is 0.534, which is also more than the 90%-quantile of the
asymptotic distribution.

The least squares estimation within the model for quadratic regression is
θ̂l2 = (−0.684688, 3.043423,−1.206010)T . Within the model for cubic regression it is

θ̂l2 = (0.676493,−1.739798, 3.834566,−1.602871)T (Figure 1). Although the residuals are
not normally distributed, we tests the null hypothesis H0 : θ4 = 0 against H1 : θ4 6= 0
by the F-test (function anova in S-Plus). The F-test provides for the null hypothesis a
p-value=0.018, so H0 : θ4 = 0 is rejected. This is due to the outliers at the right hand
side and without them a quadratic or linear regression function is a good description of
the data.
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6 Proofs

For more details of the proofs see also Wellmann (2007c).

Proof of Lemma 1

Since r1, ..., rq are linearly independent, they belong to a hyperplane H with 0 6∈ H.
There is a γ < 0 and a u ∈ IRq, such that H =

{
v ∈ IRq : vTu = γ

}
.

Since r1, ..., rq don’t belong to the half space
{
v ∈ IRq : vTu ≥ 0

}
, we have dH(0, r) ≤ 1.

It remains to show the equivalence.

(ii)⇒ (i): For any j = 1, . . . , q + 1 let Hj be the hyperplane that contains the points
(ri)i∈{1,...,q+1}\{j}.

Step 1: There is a j ∈ {1, . . . , q + 1} such that 0 and rj are on different sides of Hj.

Proof: Since r2, . . . , rq+1 is a Basis of IRq, there exists γ2, . . . , γq+1 ∈ IR such that
r1 = γ2r2 + ...+ γq+1rq+1. Since r1 /∈ IR≤0r2 + ...+ IR≤0rq+1 we may assume that γ2 > 0.
We prove that r1 and 0 are on different sides of H1, if r2 and 0 are on the same side of
H2. Hence, we have:

(a) r1 = γ2r2 + ...+ γq+1rq+1 with γ2 > 0.

(b) There are α > 0 and β3, . . . , βq+1 ∈ IR such that

r2 = r1 − α r1 +
q+1∑
j=3

βj(rj − r1) ∈ IR<0r1 +H2.

From these equations we obtain two different representations of r2:

r2 =
(
1 − α−

q+1∑

j=3

βj

)
r1 + β3r3 + ...+ βq+1rq+1,

r2 =
1

γ2

r1 +
−γ3

γ2

r3 + ...+
−γq+1

γ2

rq+1.

Comparing the coefficients leads to

0 <
1

γ2

= 1 − α−
q+1∑

j=3

βj and
−γk

γ2

= βk for k = 3, . . . , q + 1.

13



It follows that

γ2 + ...+ γq+1 = γ2 − γ2βj − ...− γ2βq+1

= γ2

(
1 −

q+1∑

j=3

βj

)

=

1 −
q+1∑
j=3

βj

1 − α−
q+1∑
j=3

βj

> 1.

With (a) we have

r1 = (γ2 + γ3 + ...+ γq+1)r2 + γ3(r3 − r2)...+ γq+1(rq+1 − r2).

Thus there is a λ ∈ (0, 1) with: λ r1 ∈ r2 +
q+1∑
j=3

IR(rj − r2) = H1.

Hence, r1 and 0 are on different sides of H1. This finishes the proof of Step 1.

Step 2: Main proof. The vectors rj and 0 are on different sides of this affine hyperplane
Hj. Let v ∈ Hj. All vectors r1, . . . , rq+1 are in the open half space IR>0v+ (Hj − v). The
half space IRq\(IR>0v+(Hj−v)) don’t contain the vectors r1, . . . , rq+1. Thus, dH(0, r) = 0.

(i)⇒(ii)

The vectors r1, . . . , rq+1 belong to an open half space H with 0 ∈ ∂ H

⇒ −r2, . . . ,−rq+1 ∈ H ′ := IRq\H
⇒ IR≤0r2, . . . , IR≤0rq+1 ⊂ H ′

⇒ IR≤0r2 + ...+ IR≤0rq+1 ⊂ H ′.

Because of r1 6∈ H ′ it follows that r1 /∈ IR≤0r2 + ...+ IR≤0rq+1. 2

Proof of Proposition 1
Let z1, ..., zm ∈ Z, such that x1, ..., xm are linearly independent and sn := sn(θ) 6= 0 for
n = 1, ...,m, where m ≤ q. Let be

X̃ := (Xm+1, ..., Xq+1),

Z ′ := (z1, ..., zm, Zm+1, ..., Zq+1),

X := v(Z),

XXgp := {(xm+1, ..., xq+1) ∈ X q+1−m : each subset of q vectors from x1, ..., xq+1is lin. indep.},
XXex := {(xm+1, ..., xq+1) ∈ XXgp : ∃sm+1, ..., sq+1 ∈ {−1, 1} : dH(0, (s1x1, ..., sq+1xq+1)) = 1}.

14



We have to calculate E(ψθ(Z1, ..., Zq+1)|Z1 = z1, ..., Zm = zm) = E(ψθ(Z
′)).

Since P (X̃ ∈ XXgp) = 1 and P (ψθ(Z
′) ∈ {0, 1}) = 1, we have

E(ψθ(Z
′)) = P (ψθ(Z

′) = 1 and X̃ ∈ XXgp).

Because of {ψθ(Z
′) = 1} ∩ {X̃ ∈ XXgp} ⊂ {X̃ ∈ XXex},

it follows that

E(ψθ(Z
′)) = P (ψθ(Z

′) = 1 and X̃ ∈ XXex).

For r2, ..., rq+1 ∈ IRq let σ(r2,...,rq+1) : {2, ..., q + 1} → {−1, 1}, such that

s1x1 ∈ IR≤0σ(r2,...,rq+1)(2)r2 + ...+ IR≤0σ(r2,...,rq+1)(q + 1)rq+1,

if each subset of q vectors from s1x1, r2, ..., rq+1 is linearly independent.
Since x2, ..., xm are fixed, we can write σx̃ := σ(x2,...,xq+1) for x̃ = (xm+1, ..., xq+1) ∈ XXgp.

Now, we prove that

P (ψθ(Z
′) = 1 and X̃ ∈ XXex) = P (∀n = m+ 1, ..., q + 1 : signθ(Zn) = σX̃(n), X̃ ∈ XXex}.

Therefore let zm+1, ..., zq+1 ∈ Z with x̃ := (xm+1, ..., xq+1) ∈ XXex.
Since x̃ ∈ XXex there are sm+1, ..., sq+1 ∈ {−1, 1} with dH(0, (s1x1, ..., sq+1xq+1)) = 1.
With Lemma 1 it follows that s1x1 ∈ IR≤0s2x2 + ...+ IR≤0sq+1xq+1.
Hence, the definition of σx̃ implies that

sn = σx̃(n) for n = 2, ...,m. (9)

Furthermore, we have

ψθ(z) = 1

⇔ θ 6∈ ∩q+1
n=1Hn and dT (θ, z) = 1

⇔ signθ(zn) 6= 0 for n = 1, ..., q + 1 and dT (θ, z) = 1

⇔ signθ(zn) 6= 0 for n = 1, ..., q + 1 and dH(0, (s1(θ)x1, ..., sq+1(θ)xq+1)) = 1
Lemma 1⇔ signθ(zn) 6= 0 for n = 1, ..., q + 1 and

signθ(z1)x1 ∈ IR≤0signθ(z2)x2 + ...+ IR≤0signθ(zq+1)xq+1

⇔ ∀n = 2, ..., q + 1 : signθ(zn) = σx̃(n)
(9)⇔ ∀n = m+ 1, ..., q + 1 : signθ(zn) = σx̃(n).

Hence,

E(ψθ(Z
′)) = P (∀n = m+ 1, ..., q + 1 : signθ(Zn) = σX̃(n), X̃ ∈ XXex)

=

∫

XXex

P (∀n = m+ 1, ..., q + 1 : signθ(Zn) = σx̃(n)|X̃ = x̃) dP X̃(x̃).
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Since (signθ(Zm+1), ..., signθ(Zq+1)) and X̃ are independent, it follows, that

E(ψθ(Z
′)) =

∫

XXex

P (∀n = m+ 1, ..., q + 1 : signθ(Zn) = σx̃(n)) d P X̃(x̃)

=

∫

XXex

q+1∏

n=m+1

P (signθ(Zn) = σx̃(n)) d P X̃(x̃)

=

∫

XXex

(
1

2

)q+1−m

d P X̃(x̃)

=

(
1

2

)q+1−m

P (X̃ ∈ XXex).

For m = 1 we have XXgp ⊂ XXex and thus ψ1
θ(z1) =

(
1
2

)q+1−1
P (X̃ ∈ XXex) = 1

2q .
It remains to prove the second equation. Therefore, let m = 2.

Let x3, ..., xq+1 ∈ X , such that (x3, ..., xq+1) ∈ XXgp and let w := x3 × ... × xq+1. Then
we have

(x1, ..., xq+1) ∈ XXex

Def.⇔ ∃s3, ..., sq+1 ∈ {−1, 1} : dH(0, (s1x1, ..., sq+1xq+1)) = 1
Prop.1⇔ ∃s3, ..., sq+1 ∈ {−1, 1} : s1x1 ∈ IR<0s2x2 + ...+ IR<0sq+1xq+1

⇔ ∃α, β > 0,∃λ ∈ IRq, λ 6= 0 : (αs1x1 + βs2x2, x3, ..., xq+1)λ = 0

⇔ ∃α, β > 0 : det(αs1x1 + βs2x2, x3, ..., xq+1) = 0

⇔ ∃α, β > 0 : (αs1x1 + βs2x2)
Tw = 0

⇔ ∃α, β > 0 : αs1x
T
1w + βs2x

T
2w = 0

⇔ sign(s1x
T
1w) = −sign(s2x

T
2w)

⇔ s1s2x
T
1wx

T
2w < 0.

Note, that the equation

P (sU < 0) = sP (U < 0) +
1 − s

2

holds for each IR-valued random variable U with P (U = 0) = 0 and s ∈ {−1, 1}. It
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follows that

ψ2
θ(z1, z2) = E(ψθ(Z

′)) − E(ψθ)

=

(
1

2

)q+1−2

P (X̃ ∈ XXex) −
1

2q

=

(
1

2

)q−1

P (s1s2x
T
1WxT

2W < 0) − 1

2q

=

(
1

2

)q−1

(s1s2P (xT
1WxT

2W < 0) +
1 − s1s2

2
) − 1

2q

=
s1s2(P (xT

1WxT
2W < 0) − 1

2
)

2q−1
.

Proof of Proposition 2
Note, that the equation

P
( N∏

j=1

Uj < 0
)

=
1

2
− 1

2
(1 − 2P (U1 < 0))N

holds for N ∈ IN and i.i.d. IR-valued random variables U1, ..., UN with P (U1 = 0) = 0.
Since the occurring determinants are Vandermonde determinants, we have for
all t1, t2 ∈ IR:

K(x(t1), x(t2))

= P (x(t1)
T (X3 × ...×Xq+1) x(t2)

T (X3 × ...×Xq+1) < 0) − 1

2

= P (det (x(t1), x(T3), . . . , x(Tq+1)) · det (x(t2), x(T3), . . . , x(Tq+1)) < 0) − 1

2

= P
( ∏

j≥3

(Tj − t1)
∏

3≤i<j≤q+1

(Tj − Ti) ·
∏

j≥3

(Tj − t2)
∏

3≤i<j≤q+1

(Tj − Ti) < 0
)
− 1

2

= P
( q+1∏

j=3

(Tj − t1)(Tj − t2) < 0
)
− 1

2

=
1

2
− 1

2
(1 − 2P ((T1 − t1)(T1 − t2) < 0))q−1 − 1

2

= −1

2
(1 − 2|F T1(t1) − F T1(t2)|)q−1

. 2

Proof of Proposition 3
At first we derive the Fourier series representation of f r where f is given by

f : [−1, 1] ∋ z −→ f(z) =
1

2
− |z| ∈

[
−1

2
,
1

2

]
.
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Since
{

1√
2
, cos(l π·), sin(l π·); l ∈ IN

}

is an orthonormal basis of IL2[−1, 1] and f r is with f an even function, f r can be repre-
sented only by 1√

2
and the cosine functions, i.e.

f r(z) = α
(r)
0 · 1√

2
+

∞∑

l=1

α
(r)
l · cos(l π z).

Since f r is continuous and piecewise differentiable, the series is uniformly convergent so
that

α
(r)
0 =

∫ 1

−1

f r(z) · 1√
2
dz =

√
2

∫ 1

0

f r(z) dz

and for l ≥ 1

α
(r)
l =

∫ 1

−1

f r(z) · cos(l π z) dz = 2

∫ 1

0

f r(z) · cos(l π z) dz.

This implies for r = 1

α
(1)
0 = 0,

and for l ≥ 1

α
(1)
l = 2

∫ 1

0

(
1

2
− z

)
· cos(l π z) dz =

{
0, if l is even,

4
l2 π2 , if l is odd.

(10)

For r = 2, we obtain

α
(2)
0 = 2

∫ 1

0

(
1

2
− z

)2

· 1√
2
dz =

√
2

12
,

and for l ≥ 1

α
(2)
l = 2

∫ 1

0

(
1

2
− z

)2

· cos(l π z) dz =

{
4

l2 π2 , if l is even,

0, if l is odd.
(11)

For r > 2, we have

α
(r)
0 =

2√
2

∫ 1

0

(
1

2
− z

)r

dz =
2√
2

{
0, if r is odd,

1
(r+1) 2r , if r is even,
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and for l ≥ 1, partial integration provides the following recursion formula for α
(r)
l

α
(r)
l = 2

∫ 1

0

(
1

2
− z

)r

· cos(l π z) dz

= 2
1

l π
sin(l π z)

(
1

2
− z

)r∣∣∣∣
1

0

+
2 r

l π

∫ 1

0

(
1

2
− z

)r−1

· sin(l π z) dz

=
2 r

l π

∫ 1

0

(
1

2
− z

)r−1

· sin(l π z) dz

= −2 r

l π

1

l π
cos(l π z)

(
1

2
− z

)r−1
∣∣∣∣∣

1

0

− 2 r

l π

(r − 1)

l π

∫ 1

0

(
1

2
− z

)r−2

· cos(l π z) dz

= −2 r

l π

1

l π

[
(−1)l

(
−1

2

)r−1

−
(

1

2

)r−1
]
− 2 r

l π

(r − 1)

l π

1

2
α

(r−2)
l

= − r

l2 π2 2r−2

[
(−1)l+r−1 − 1

]
− r (r − 1)

l2 π2
α

(r−2)
l

=






− r (r−1)
l2 π2 α

(r−2)
l , if l + r is odd,

r
l2 π2

[
1

2r−3 − (r − 1)α
(r−2)
l

]
, if l + r is even.

Since α
(1)
l = 0 if l is even and α

(2)
l = 0 if l is odd, we obtain α

(r)
l = 0 if r + l is odd. If

r + l is even and l ≥ 1, then we have

α
(r)
l = −

∑

k∈{1,...,r}

k odd

r!

2r−k−2(r − k)!
(−l2 π2)−

k+1

2 .

This can be seen by induction over r: for r = 1 and l odd, it holds according to (10)

−
∑

k∈{1,...,r}

k odd

r!

2r−k−2(r − k)!
(−l2 π2)−

k+1

2 = − 1!

2−2 0!
(−l2 π2)−1 =

4

l2 π2
= α

(1)
l ,

and for r = 2 and l even, it holds according to (11)

−
∑

k∈{1,...,r}

k odd

r!

2r−k−2(r − k)!
(−l2 π2)−

k+1

2 = − 2!

2−1 1!
(−l2 π2)−1 =

4

l2 π2
= α

(2)
l .
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The induction step is done from r to r + 2, that is:

α
(r+2)
l =

r + 2

l2 π2

[
1

2r−1
− (r + 1)α

(r)
l

]

=
r + 2

l2 π2




1

2r−1
+ (r + 1)

∑

k∈{1,...,r}

k odd

r!

2r−k−2(r − k)!
(−l2 π2)−

k+1

2





=
(r + 2)!

2r+2−3 (r + 2 − 1)!
(l2 π2)−1

−
∑

k∈{1,...,r}

k odd

(r + 2)!

2r+2−(k+2)−2(r + 2 − (k + 2))!
(−l2 π2)−

k+2+1

2

= −
∑

k∈{1,...,r+2}

k odd

(r + 2)!

2r+2−k−2(r + 2 − k)!
(−l2 π2)−

k+1

2 .

Hence, we always have α
(r)
0 =

√
2 γ

(r)
0 and α

(r)
l = 2 γ

(r)
l for l ≥ 1, where γ

(r)
l are the

quantities of Theorem 3.

To finish the proof, we transfer the Fourier series representation of f r(z) on [−1, 1] to
that of gr(s, t) = f r(s− t) on [0, 1]2. This provides

(
1

2
− |s− t|

)r

= f r(s− t) = α
(r)
0 · 1√

2
+

∞∑

l=1

α
(r)
l · cos(l π (s− t))

= α
(r)
0 · 1√

2
+

∞∑

l=1

α
(r)
l · [cos(l π s) · cos(l π t) + sin(l π s) · sin(l π t)]

which is the representation given by Theorem 3 using the relation between α
(r)
l and γ

(r)
l .

The quantities γ
(r)
l are used in Theorem 3 since only

S =
{

1,
√

2 cos(l π·),
√

2 sin(l π·); l ∈ IN
}

are normalized functions of IL2[0, 1]. However, S is not an orthonormal system of IL2[0, 1].

But, since the quantities γ
(r)
l are zero as soon as r + l is odd, only the systems

{√
2 cos(l π·),

√
2 sin(l π·); l ∈ IN and l is odd

}
for r odd,

{
1,

√
2 cos(l π·),

√
2 sin(l π·); l ∈ IN and l is even

}
for r even,

are relevant and these are orthonormal systems of IL2[0, 1]. 2
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