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1 Introduction

Many distribution-free tests as the Wilcoxon’s rank sum test base on ranks.
Ranks are defined for univariate location data. One possibility to extend the
notion of ranks to multivariate data and regression is the concept of data
depth. Maximizing the data depth leads also to new outlier robust estimators.

Different depth notions for multivariate data are, for example, the half space
depth of Tukey (1975) and the simplicial depth of Liu (1988, 1990). For other
depth notions see the book of Mosler (2002) and the references in it. Multivari-
ate depth concepts were transferred to regression by Rousseeuw and Hubert
(1999) and studied in a more general context by Mizera (2002).

Although data depth generalizes the notion of rank, data depth is mainly
used for estimation. Only few papers deal with tests based on data depth.
Liu (1992) and Liu and Singh (1993) proposed rather special distribution-
free multivariate rank tests based on depth notions. Distribution-free tests
for regression based on depth notions were derived by Van Aelst et al. (2002),
Müller (2005) and Wellmann et al. (2006). Van Aelst et al. (2002) even derived
an exact test based on the regression depth of Rousseeuw and Hubert (1999)
but did it only for linear regression. Regarding simplicial regression depth,
Müller (2005) derived the asymptotic distribution of the test statistic not
only for linear regression but also for quadratic regression. This approach was
extended to polynomial regression of arbitrary degree and multiple regression
through the origin by Wellmann et al. (2006). Simplicial regression depth
is related to the regression depth of Rousseeuw and Hubert (1999) as the
simplicial depth of Liu (1988, 1990) to the half space depth of of Tukey (1975)
for multivariate location. The advantage of a simplicial depth notion is that the
depth function is an U-statistic and that therefore the asymptotic distribution
is in principle known.

However, the calculation of simplicial regression depth is not that easy. In this
paper we propose an algorithm to calculate the simplicial regression depth of
a single parameter value of a polynomial regression model of arbitrary degree.
Moreover we present an algorithm for calculating the maximum simplicial
regression depth within an affine subspace of the parameter space or within a
polyhedron of the parameter space. Such subsets of the parameter space are of
interest in hypotheses testing so that these algorithms are in particular useful
for testing hypotheses in polynomial regression models. But the algorithms are
also useful for calculating outlier robust estimators based on the maximum
simplicial regression depth. Since the maximum simplicial depth estimator,
which is the parameter which maximizes the simplicial depth, is not unique
in the general case, we propose two methods based on l1 and l2 minimization
to obtain unique estimators.
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In Section 2, the theoretical background of the simplicial regression depth is
provided. To improve the tests, the regression depth of Rousseeuw and Hu-
bert (1999) which was used in Müller (2005) to define the simplicial regression
depth is modified to a harmonized depth. Based on this harmonized regression
depth, the simplicial regression depth and the maximum simplicial depth esti-
mator for polynomial regression is defined in Section 2. Section 3 provides the
algorithms for calculating the simplicial depth and the maximum simplicial
depth estimator for polynomial regression. It also shows how to find a unique
maximum simplicial depth estimator. In Section 4 the distribution-free tests
based on simplicial depth for one-sample problems given by Wellmann et al.
(2006) are provided and extended to general two-sample tests for polynomial
regression. The Sections 5 and 6 provide applications. In Section 5 the maxi-
mum simplicial depth estimator is compared with other estimators by means
of the Hertzsprung-Russell data. The new distribution free tests are applied on
some hypotheses appearing in a problem of shape analysis of the fish species
Lepomis gibbosus in Section 6. There it is also shown that hypotheses which
are difficult to test in classical theory can be tested with the new tests.

2 The theoretical background

2.1 The simplicial depth

We assume that the bivariate random variables Z1, ..., ZN are independent and
identically distributed throughout the paper. The variables Zn have values in
Z ⊂ R

2. We assume, that there is a known family of probability measures
P = {P

(Z1,...,ZN )
θ : θ ∈ Θ} with Θ = R

q. For given observations z1, ..., zN ∈ Z,
we always write z = (z1, ..., zN ) and zn = (yn, tn).

Mizera (2002) defined depth via general loss functions while Müller (2005)
regarded likelihood depth where the loss is given by the negative likelihood
function. In most models for polynomial regression, the likelihood functions
have special properties. We call functions with these properties ”quality func-
tions for polynomial regression”.
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Definition 2.1 (Quality functions for polynomial regression) Let x :
R → R

q be the function with x(t) = (1, t, ..., tq−1)T and for z0 = (y0, t0) ∈ Z
take ϕz0 : R → R to be a function with continuous derivatives and exactly one

critical point h(z0), in which the function has a maximum.

Then the function

Gz0 : Θ → R with Gz0(θ) := ϕz0(x(t0)
T θ)

is said to be a quality function for polynomial regression.

Usually, we would take Gzn
to be the likelihood function Gzn

(θ) = fθ(zn), where
fθ is the density function of Zn, but also other choices are possible. A family of
quality functions is needed to define the global depth (compare Mizera 2002):

Definition 2.2 (Global depth) Let {Gz0}z0∈Z be a family of quality func-

tions for polynomial regression.

The global depth dG(θ, z) of θ = (θ1, ..., θq)
T ∈ Θ within z1, ..., zN ∈ Z is

defined to be the smallest number m of observations zi1 , ..., zim that needs to

be removed, such that there is a parameter θ′ 6= θ with

Gzj
(θ′) > Gzj

(θ) for all j ∈ {1, ..., N}\{i1, ..., im}.

Roughly speaking, the global depth of a parameter θ with respect to the
observations z1, ..., zN ∈ Z is the number of observations that needs to be
removed, such that there is a better parameter for all remaining observations.

Let us define the sign of an observation z0 = (y0, t0) ∈ Z to be

sigθ(z0) := sign(h(z0) − x(t0)
T θ).

In most regression setups we have h(zn) = yn and thus, sigθ(zn) is the sign
of the residual of the observation zn. However for regression with exponential
distributed dependent observations Yn we have h(zn) = log(yn) (see Müller
2005), if we take the quality functions to be the likelihood functions. The
global depth coincides with the regression depth of Rousseuw and Hubert
(1999), if the dependent observations are appropriately transformed.

It can be shown (see Rousseuw and Hubert 1999), that the parameter space
Θ = R

q is divided up into domains (open, connected sets) with constant depth
by the hyperplanes

Hzn
= {θ ∈ R

q : sigθ(zn) = 0}, n = 1, ..., N.

For given observations let Dom(z) be the set of all those domains with constant
depth. We define d̃G(G, z) := dG(θ, z) for G ∈ Dom(z) and θ ∈ G.

The following modification of the global depth leads to better tests, than the
global depth itself. Therefor, we modify the global depth on
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Border(z) :=
N⋃

n=1
Hzn

. The resulting depth function is called the harmonized

depth.

Definition 2.3 (Harmonized depth) The harmonized depth of θ within

z = (z1, ..., zN ) is defined to be

dH(θ, z) := min
G∈Dom(z),θ∈Ḡ

d̃G(G, z),

where Ḡ is the closure of G.

This depth has the disadvantage, that the distribution is not known. For the
purpose of obtaining tests, we consider the U-statistic with the harmonized
depth as the kernel function. The resulting depth function is called the sim-
plicial depth.

Definition 2.4 (Simplicial depth) The simplicial depth of θ within

z = (z1, ..., zN ) is defined to be

dS(θ, z) :=

(
N

q + 1

)−1 ∑

1≤n1<...<nq+1≤N

dH(θ, (zn1 , . . . , znq+1)).

If there are q + 1 observations z1, ..., zN ∈ Z, such that t1, ..., tN are pairwise
different, then there is exactly one bounded domain S(z) ∈ Dom(z). The clo-
sure of this domain is a simplex. Since the harmonized depth dH(·, z) is zero on
Border(z), the harmonized depth is the indicator function
dH(θ, z) = IIS(z)(θ). Hence, we can write

dS(θ, z) =
#

{
{n1,...,nq+1}⊂{1,...,N}: dH

(
θ,

(
zn1 ,...,znq+1

))
>0

}

(
N

q+1

) .

This means, that the simplicial depth is the fraction of simplicies, which con-
tains the parameter θ as an interior point.

For testing a hypothesis of the form H0 : θ ∈ Θ0, the test statistic will
be based on max

θ∈Θ0

dS(θ, z) and the simplicial depth is maximal in a point

θ ∈ R
q\Border(z). The hypothesis H0 is rejected, if the maximum depth is

to small. The asymptotic distribution does not depend on it, how the kernel
function is defined on Border(z), but the test statistic depends on this choice.
If the simplicial depth would be based on the global depth as the kernel func-
tion, then the depth would be maximal in a point θ ∈ Border(z) and we would
have a greater test statistic. This would be a disadvantage, if the aim is to
reject the null hypothesis.
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For q + 1 observations z1, ..., zq+1 ∈ Z with pairwise different t1, ..., tq+1 and
θ ∈ R

q\Border(z), we have an important characterization of the harmonized
depth. We say, that the observations are alternating, if there is a permutation
π with tπ(1) < ... < tπ(q+1), such that the sequence sigθ(zπ(1)), ..., sigθ(zπ(q+1))
is alternating. The harmonized depth is equal to one, iff the observations are
alternating. This characterization was used also in Müller (2005) for construct-
ing tests.

2.2 The maximum simplicial depth estimator

The simplicial depth can be used to estimate unknown parameters.

Definition 2.5 (Maximum simplicial depth estimator) A maximum

simplicial depth estimator for given observations z1, ..., zN ∈ Z with re-

spect to a subset IK ⊂ R
q is defined to be a parameter

θ̂S ∈ arg max
θ∈IK

dS(θ, z).

We usually choose IK = R
q, but if we assume that the true parameter belongs

to a known subset of R
q, then we can take IK to be this subset. In particular

for testing H0 : θ ∈ Θ0 we choose IK = Θ0.

The maximum simplicial depth estimator is not unique. If IK is an affine
subspace of R

q or a polyhedron, then the closure of the set of all parameters
θ ∈ IK that maximize dS(·, z)|IK is a union of polytopes. Let IP be the set
of these polytopes. We will calculate the verticies ext(P ) of each polytope
P ∈ IP . Then we have

arg max
θ∈IK

dS(θ, z) =
⋃

P∈IP

conv(ext(P )), (1)

where P = conv(ext(P )) is the set of all convex combinations of verticies from
P . If we assume, that the true probability measure belongs to {Pθ : θ ∈ IK},
then we can choose θ̂S ∈

⋃

P∈IP
P as an estimation for the true parameter.

3 Computation

In this section, we compute maximum simplicial depth estimators, defined in
2.5, where IK is an affine subspace of R

q, a polyhedron or just a single point.
Therefore, let be z1, ..., zN ∈ Z, such that t1, ..., tN are pairwise different and
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suppose, that there is no polynomial of degree q − 1, that contains q + 1
observations.

3.1 Computing the simplicial depth of a given parameter

For computing maximum simplicial depth estimators, we need an algorithm for
calculating the simplicial depth of a given parameter value θ ∈ R

q\Border(z).
The simplicial depth doesn’t depend on the order of the observations, so we
may assume, that the observations are already ordered, this means t1 < ... <
tN .

Since the harmonized depth for q +1 observations is equal to one, iff the signs
of the observations are alternating, the absolute simplicial depth

(
N

q+1

)
dS(θ, z)

is equal to the number of ordered q + 1-tuples (n1, . . . , nq+1) ∈ {1, . . . , N}q+1

for which the sequence (sigθ(zn1), ..., sigθ(znq+1)) is alternating.

Let lr be the number of runs within (sigθ(z1), ..., sigθ(zN)). For j ≤ lr take Rj

to be the set of all n ∈ {1, ..., N}, such that zn belongs to the j-th run and let
rj := #Rj. For j > lr let rj = 0.

Then we have

( N

q+1) dS(θ, z) = #
⋃

1≤j1<...<jq+1≤lr

jk+1−jk is odd

Rj1 × ... × Rjq+1

=
∑

1≤j1<...<jq+1

jk+1−jk is odd

rj1 · ... · rjq+1

=
lr∑

j1=1

rj1(
∑

j2∈j1+1+2N0

rj2(...rjq
(

∑

jq+1∈jq+1+2N0

rjq+1)...))

=
lr∑

j=1

hq+1(j),

where hk is recursively defined by h1(j) := r(j) and

hk(j) := rj

∑

i∈j+1+2N0

hk−1(i) for k = 2, ..., q + 1 and j ≥ 1.

The number hk(j) is the number of all ordered k-tuples of observations with
alternating signs, for which the smallest index belongs to the j-th run.
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Let

gk(j) :=
∑

i∈j+1+2N0

hk(i) for k = 1, ..., q and j ≥ 1.

Then we have the recursion formulas

gk(j) = hk(j + 1) + gk(j + 2) and

hk(j) = rj gk−1(j).

Now let sig be a shorthand for the sequence (sigθ(z1), ...., sigθ(zN)) and sup-
pose that the observations z1, ..., zN are ordered. Then the following algorithm
calculates the simplicial depth:

”sim.depth.sig” ← function(q, sig){
N ← length(sig)

# — Calculation of the run lengths —
r ← 0 ∈ R

N

cur.run ← 1
cur.sig ← sig1

forj from 1 to N do {
if(sigj 6= cur.sig){

cur.run ← cur.run + 1
cur.sig ← sigj

}
rcur.run ← rcur.run + 1

}

# — Calculation of the depth —
lr ← cur.run
h1 ← r
if(lr ≥ q + 1){

fork from 2 to (q + 1) do {
forj from (lr − 1) to 1 step −1 do {

gk−1(j) ← hk−1(j + 1) + gk−1(j + 2)
hk(j) ← rj gk−1(j)

}
}

}
absolute.depth ←

∑lr
j=1 hq+1(j)

return absolute.depth
}
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3.2 Assumptions and notations for computing the maximum simplicial depth

estimators

In this subsection, we introduce the notations, that are used within the algo-
rithm, which computes all maximum simplicial depth estimators with respect
to an affine subspace IK.

Because of (1), it suffices to calculate the verticies of the polytopes P ∈ IP .

Let D := dim IK and let JD be the set of all ordered D-tuples
(j1, ..., jD) ∈ {1, ..., N}D.

For brevity let us write X(j) :=





x(tj1)
T

:

x(tjD
)T




and h(j) :=





h(zj1)

:

h(zjD
)




, where

j ∈ JD. The affine subspace IK has a representation

IK = p + Rr1 + ... + RrD

with p ∈ R
q and linearly independent r1, ..., rD ∈ R

q. Let R := (r1, ..., rD) and
suppose, that for each subset of D observations zj1 , ..., zjD

from z1, ..., zN the
matrix X(j) R can be inverted.

For each P ∈ IP there is a G ∈ Dom(z), such that P = Ḡ ∩ IK. The verticies
of each polytope Ḡ ∩ IK with G ∈ Dom(z) are points of intersection of D
hyperplanes from Hz1 , ..., HzN

with IK. For j ∈ JD let θ̃j ∈ R
q, such that

{θ̃j} =
D⋂

i=1

Hzji
∩ IK ( see 3.3).

With the algorithm, we find all parameters from {θ̃j : j ∈ JD}, which are
verticies of a polytope P ∈ IP with maximum depth. The algorithm calculates
the maximum depth with the formula

max
θ∈IK

dS(θ, z) = max
j∈J

max
G∈Dom(z):θ̃j∈Ḡ

dS(G, z).

3.3 The algorithm for computing the maximum simplicial depth estimators

The algorithm for computing the verticies of the polytopes P ∈ IP with max-
imum depth depends on t := (t1, ..., tN), (h(z1), ...., h(zN)), p and R. By using
the same notations as in the text, the following algorithm calculates the re-
quired verticies. For each vertex it calculates an ID (identification vector) for
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the adjacent domain with maximum depth. As an ID we use the signs, that
the observations have with respect to a parameter from this domain. Further-
more, it calculates the test statistic for the one-sample test, described in the
next section.

1 π ← order(t)
2 t ← (tπ(1), ..., tπ(N))

T

3 h ← (h(zπ(1)), ..., h(zπ(N)))
T

4 X ←





1 t1 ... tq−1
1

: : : :

1 tN ... tq−1
N





5 θ̂ls ← p + R lsfit(X R, h − X p)

6 lower.bound ← sim.depth.sig(q, sign(h − X θ̂ls))
7 param ← ∅
8 for(j ∈ JD){
9 λj ← (X(j) R)−1 (h(j) − X(j) p)

10 θ̃j ← p + R λj

11 sig ← sign(h − X θ̃j)
12 for(s ∈ {−1, 1}D){
13 for(m ∈ {1, ..., D}){sigjm

← sm}
14 depth ← sim.depth.sig(q, sig)
15 if(depth > lower.bound){
16 param ← ∅
17 lower.bound ← depth}
18 if(depth == lower.bound){

19 param ← param ∪ {(θ̃j, sig)}
20 }
21 }
22 }

23 return list(best.param = param, test.statistic = N
(

lower.bound

( N

q+1)
− 1

2q

)
)

At first, we sort the observations, such that t1 < ... < tN . In line 5 and 6, we
calculate a lower bound of the simplicial depth, namely the simplicial depth
of the LS estimation of θ.

In the lines 8-22, we consider all verticies one after another in a suitable order.
As mentioned in 3.2, each subset of D observations zj1 , ..., zjq

from z1, ..., zN

corresponds to a vertex θ̃j.

In line 10, we calculate this vertex. Let us proof the formulas, mentioned
in line 9 and 10. Since θ̃j ∈ Hzji

for i = 1, ..., D, we have X(j) θ̃j = h(j).
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Since θ̃j ∈ IK, there exists a λj ∈ R
D, such that θ̃j = p + R λj and we have

λj = (X(j) R)−1(h(j) − X(j) p).

Later on, in the lines 12-21, we calculate the depths of the 2D adjacent do-
mains. In order to improve the algorithm, it could be modified, such that it
stops the calculation of the depths of the 2D adjacent domains as soon as it
is clear, that none of them has maximum depth.

We put each parameter with maximum depth and the sign vector of the ad-
jacent domain with maximum depth into the list ”param”.

It remains to say, how to calculate the depths of the adjacent domains. The
depth of an adjacent domain G depends only on the sequence
sigθ(z1), ..., sigθ(zN), where θ ∈ G. For n ∈ {1, ..., N}\{j1, ..., jD} we have
sigθ(zn) = sigθ̃j

(zn) and for each s ∈ {−1, 1}D, there is exactly one adjacent

domain with (sigθ(zj1), ..., sigθ(zjD
)) = s.

At last, we create a list with the results in line 23. The parameters with the
same sign vector create the same polytope.

3.4 Calculating the maximum depth for a polyhedron

If IK is a polyhedron within an affine D-dimensional subspace of R
q, then we

have to modify the algorithm for calculating all parameters θ ∈ arg max
θ∈IK

dS(θ, z).

In particular, we need another approach for calculating the lower bound given
by the depth of the least square fit in line 6, because it could happen, that
the least square fit doesn’t belong to IK. The easiest way is to choose 0 as the
lower bound.

The boundary of IK is a union of hyperplanes. We put them to the hyperplanes
Hz1 , ..., HzN

and obtain a set H of hyperplanes. If we take D hyperplanes from
H, then they have a point of intersection. For each point of intersection, that
belongs to IK, we calculate the depths of the adjacent domains, that have a
nonempty intersection with IK. In this way, we find the verticies of the set of
all parameters with maximum depth within IK.

3.5 The best of all deepest parameters

In general the set arg max
θ∈IK

dS(θ, z) =
⋃

P∈IP
conv(ext(P )) of all deepest parame-

ters given by (1) consists of more than one parameter. Then the problem is
how to choose a parameter from this set. We propose here two methods based
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on l1 and l2 minimization to choose a best deepest parameter.

For P ∈ IP , let us write ext (P ) =
{
θP,1, ..., θP,Np

}
. Let ΛP be the set of all

λ ∈ [0, 1]Np with
∑Np

i=1 λi = 1. For each θ ∈P there exists a λ ∈ ΛP such that

θ = θP,1λ1 + ... + θP,Np
λNp

.

With θP :=
(
θP,1, ..., θP,Np

)
we have θ = θP λ, where λ =

(
λ1, ..., λNp

)T
. We

define the optimal parameter as that θ̂BD = θP λ̂ ∈ ∪P∈IP P with

N∑

n=1

ρ
(
yn − x (tn)T θP λ̂

)
= min

λ∈ΛP , P∈IP

N∑

n=1

ρ
(
yn − x (tn)T θP λ

)
,

where ρ (x) = |x| or x2. In examples, we find the solution by calculating
M > 20000 randomly generated vectors λ ∈ ΛP . The parameter θ̂BD is called
the best of all deepest parameters.

4 Tests

4.1 One-sample tests

For the one-sample problem, the distribution free asymptotic α-level tests for
testing all hypotheses of the form H0 : θ ∈ Θ0, where Θ0 is a subset of the
parameter space, are based on the simplicial depth.

We assume, that there is a known p ∈ [0, 1] such that for all θ ∈ Θ we have:

(2)• Pθ(sigθ(Z1) ≥ 0|T1) ≡ p a.s.,
• Pθ(sigθ(Z1) = 0|T1) = 0 a.s.,
• Pθ(T1 = t) = 0 for all t ∈ R.

The asymptotic distribution depends on it, if p = 1
2

or p 6= 1
2
. The most

interesting case is p = 1
2
. For the other one see Müller (2005). In both cases,

the test statistic is based on sup
θ∈Θ0

dS(θ, (z1, ..., zN )) and can be computed with

the algorithm from 3.3 resp. 3.4, if Θ0 is an affine subspace or a polyhedron.

In particular, for p = 1
2

the test statistic is given by

T (z1, ..., zN ) := N

(

sup
θ∈Θ0

dS(θ, (z1, ..., zN )) −
1

2q

)

.
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Its asymptotic distribution was derived for linear and quadratic regression in
Müller (2005) and for general ploynomial regression in Wellmann et al. (2006).
It is given as follows:

If q is even, then

N
(
dS(Z1, . . . , ZN) −

1

2q

)
L

−→
∞∑

l=0

λ2l+1

(
Xl

2 + Yl
2 − 2

)
, (3)

if q is odd, then

N
(
dS(Z1, . . . , ZN) −

1

2q

)
L

−→ λ0

(
W 2 − 1

)
+

∞∑

l=1

λ2l

(
Xl

2 + Yl
2 − 2

)
, (4)

where

• W,X0, Y0, X1, Y1, ... are i.i.d. standard normal distributed random variables.
• λ0 = − (q+1)

2q+1

• λj =
∑

k∈{0,...,q−1}

k odd

(q+1)!
2q−k(q−1−k)!

(
− j2π2

)−
(k+1)

2 for j ∈ N.

The null hypothesis H0 is rejected, if T (z1, ..., zN ) is less than the α-quantile
of the asymptotic distribution, mentioned in (3) and (4).

A simple possibility for estimating the quantiles is the generation of random
numbers of the distribution. The quantiles given in the Table 1 where calcu-
lated by computing 10 000 random numbers of the distribution (only the first
200 summands). The calculation of the quantiles was repeated 500 times. The
means of these quantiles are given in the table. The 99.5% confidence band
is less then ±0.004 for each estimated quantile and it is less then ±0.001 for
α ≥ 6%.

4.2 Two-sample tests

Let IK be a subset of the parameter space Θ = R
q. In this section, we present

a distribution free, asymptotic α-level test for testing the hypothesis, that
independent observations from two populations can be described by the same
polynomial regression function with parameter in IK.

For i = 1, 2 take θi to be the unknown, true parameter for the observations
zi := (zi,1, ..., zi,Ni

) ∈ ZNi from the i-th sample. For each population, we make
the same assumptions, as for the one sample test. In particular, we assume,
that (2) holds.
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Table 1
Means of the simulated quantiles for different regression models

α-quantile linear quadratic cubic

q = 2 q = 3 q = 4 q = 5

0.5% -2.617 -1.942 -1.312 -0.840

1.0% -2.195 -1.633 -1.112 -0.716

1.5% -1.949 -1.454 -0.994 -0.643

2.0% -1.775 -1.327 -0.911 -0.591

2.5% -1.639 -1.228 -0.847 -0.550

3.0% -1.529 -1.148 -0.793 -0.517

4.0% -1.354 -1.021 -0.709 -0.464

5.0% -1.218 -0.923 -0.644 -0.422

6.0% -1.107 -0.843 -0.591 -0.388

7.0% -1.013 -0.775 -0.545 -0.359

8.0% -0.932 -0.716 -0.506 -0.334

9.0% -0.861 -0.665 -0.471 -0.312

10.0% -0.797 -0.618 -0.439 -0.292

15.0% -0.550 -0.438 -0.317 -0.213

20.0% -0.375 -0.310 -0.228 -0.156

25.0% -0.240 -0.209 -0.158 -0.110

30.0% -0.129 -0.125 -0.010 -0.071

40.0% 0.046 0.010 -0.000 -0.008

50.0% 0.182 0.119 0.007 0.045

60.0% 0.293 0.212 0.143 0.092

70.0% 0.388 0.296 0.208 0.137

80.0% 0.473 0.378 0.272 0.182

90.0% 0.555 0.466 0.343 0.234

95.0% 0.601 0.520 0.390 0.269

99.5% 0.668 0.611 0.473 0.334
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We don’t reject the hypothesis H0 : θ1 = θ2 ∈ IK with respect to a signifi-
cance level α, if there is a θ ∈ IK such that neither the hypothesis that θ is
the true parameter for the first population, nor the hypothesis that θ is the
true parameter for the second population can be rejected with respect to a
significance level α

2
. Hence, we use the test statistic

T (z1, z2) := max
θ∈IK

Φθ(z
1, z2),

where

Φθ(z
1, z2) := min

(
N1(dS(θ, z1) −

1

2q
), N2(dS(θ, z2) −

1

2q
)
)

and we reject H0 : θ1 = θ2 ∈ IK, if T (z1, z2) is less than the α
2
-quantil of the

distribution, mentioned in (3), respectively (4).

Now, we prove that this is an asymptotic α-level test. Let ϕθ̃
N : R

N → {0, 1} be
the asymptotic one-sample α

2
-level test for testing the hypothesis H0 : θ = θ̃.

We want to test the hypothesis H0 : (θ1, θ2) ∈ Θ0 := {(θ′, θ′′) ∈ IK2 : θ′ = θ′′}
as described above. Let Z1 = (Z11, ..., Z1N1), Z2 = (Z21, ..., Z2N2) and let
ψN1,N2(z

1, z2) be the test function.

For all θ0 = (θ′, θ′) ∈ Θ0 we have

Pθ0(∃θ̃ ∈ IK : ϕθ̃
N1

(Z1) = 0 and ϕθ̃
N2

(Z2) = 0)

≥ Pθ0(ϕ
θ′

N1
(Z1) = 0 and ϕθ′

N2
(Z2) = 0)

indep.
= Pθ0(ϕ

θ′

N1
(Z1) = 0) Pθ0(ϕ

θ′

N2
(Z2) = 0).

Hence,

lim sup
N1,N2→∞

Pθ0(ψN1,N2(Z
1, Z2) = 1)

= 1 − lim inf
N1,N2→∞

Pθ0(ψN1,N2(Z
1, Z2) = 0)

Def.
= 1 − lim inf

N1,N2→∞
Pθ0(∃θ̃ ∈ IK : ϕθ̃

N1
(Z1) = 0 and ϕθ̃

N2
(Z2) = 0)

≤ 1 − lim inf
N1,N2→∞

Pθ0(ϕ
θ′

N1
(Z1) = 0) Pθ0(ϕ

θ′

N2
(Z2) = 0)

≤ 1 −
(
1 −

α

2

) (
1 −

α

2

)
< α.
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4.3 Computing the two-sample test statistic

Suppose, that IK is an affine subspace. The subspace IK is divided up into
domains by the hyperplanes Hz1,1 , ..., Hz1,N1

, Hz2,1 , ..., Hz2,N2
. In each domain,

both depth functions are constant. This means that dS(·, zi)|G∩IK is constant
for i = 1, 2 and all G ∈ Dom(z1, z2).

Hence, we put both populations together and we calculate the verticies of
each polytope Ḡ ∩ IK with G ∈ Dom(z1, z2). Let {θ̃j : j ∈ J} be the set of all
verticies.

Then it remains to calculate

T (z1, z2) = max
j∈J

max
G∈Dom(z1,z2):θ̃j∈Ḡ

ΦG(z1, z2).

For this purpose, the algorithm in 3.3 can easily be modified.

5 Comparison with other estimates

In this section we give a brief summary of the other selected estimates, and dis-
cuss and compare used estimates in examples from astronomy. For calculating
the simplicial depth, we choose h(zn) = yn within the examples.

5.1 Other regarded estimators

In order to compare maximum simplicial depth estimators with some other
selected estimates, we give a brief summary of these techniques, namely or-
dinary least square (OLS), l1-, M-, MM- and CAT- estimators. All regarded
estimators are implemented in S-Plus (see Marazzi, 1997).

The OLS (l2) estimate

θ̂l2 ∈ arg min
θ∈Θ

N∑

n=1

(
yn − x (tn)T θ

)2

is calculated with the S-Plus function lm.

The least absolute deviation (l1) estimate

θ̂l1 ∈ arg min
θ∈Θ

N∑

n=1

∣∣∣yn − x (tn)T θ
∣∣∣ .

16



is computed by the function l1fit.

Robust M- estimators θ̂M of θ are defined as

θ̂M ∈ arg min
θ∈Θ

N∑

n=1

ρ

(
yn − x (tn)T θ

ŝ

)

,

where ρ (·) is score function of the residuals with continuous and bounded
derivative ψ and ŝ is a robust scale estimator for the residuals. In the exam-
ples we use −ρ as the likelihood function of Cauchy distribution (see Jurečková
& Sen, 1996) as a function which down weights outliers because of its con-
vergence to zero when y 7−→ ±∞. This is in particular a suitable estimator,
if we expect outliers in y-direction. It is calculated by the function rreg,
method=wt.cauchy.

To deal with outliers in both y-direction and x (t)-space, we use MM-estimates
(see Yohai 1987) as a combination of high breakdown value estimation and
M-estimation. It has both the high breakdown property and higher statisti-
cal efficiency than S-estimation and the least trimmed squares (LTS) estima-
tion. The regarded robust MM-estimator is computed by the S-Plus function
lmRobMM.

The LTS estimate θ̂LTS of θ is

θ̂LTS ∈ arg min
θ∈Θ

h∑

n=1

r2
(n) (θ) ,

where r2
(1) (θ) ≤ r2

(2) (θ) ≤ ... ≤ r2
(N) (θ) are the ordered squared residuals

r2
n (θ) =

(
yn − x (tn)T θ

)2
, n = 1, 2, ..., N (see Rousseeuw, 1984). It is calcu-

lated by the function ltsreg with default h = ⌊max((N + q + 1)/2, 0.9N)⌋.

Another outlier robust estimator for linear regression is the catline (CAT
comes from Cuts All Thirds), defined in Hubert and Rousseeuw (1999). If
q = 2, then we can take the catline as an estimator for the true parameter. In
general, the catline is not the maximum depth estimator for the global depth,
but it is shown by Hubert and Rousseeuw (1999), that the catline maximizes
it in special cases.

While the first five S-Plus functions come from the basic S-Plus 6.2 package,
the CAT-estimator catline.s is from Robust Statistics web page
(http://wis.kuleuven.be/stat/robust.html).
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5.2 The Comparison

Data used in this application are from the Hertzsprung-Russell Diagram of the
Star Cluster CYG OB1, which contains 46 stars in the direction of Cygnus,
from Rousseeuw and Leroy (1987). The first variable is the logarithm of the
effective temperature at the surface of the star (tn) and the second one is the
logarithm of its light intensity (yn). In Figure 1, which is the scatterplot of
these data points, two groups of points are seen: the majority which tend to
follow a steep band and four stars in the upper left corner (called giants).

In the linear regression model with q = 2, the best parameter in the sense of
l1 and l2 minimization (see Subsection 3.5) within the single polytope with
maximum depth is θ̂BD = (−4.698, 2.180824)T , which is one vertex of this
four-vertex polytope with maximum simplicial depth 0.134 (see Figure 1).

In the quadratic regression model with q = 3 and θ3 = 0, the best parameter in
the sense of l1 and l2 minimization within the single polytope with maximum
depth is θ̂BD = (−8.206, 2.990, 0)T , which is one vertex of this three-vertex
polytope with maximum simplicial depth 0.134 (see Figure 1). It is interesting
to see the comparison of the linear models with q = 2 versus q = 3 with
θ3 = 0, where the estimators and also the polytopes with maximum depth are
different.
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Fig. 1. The best deepest lines (q = 2 and q = 3)

The other regarded estimates are as follows: θ̂l2 = (6.846,−0.427)T ,
θ̂l1 = (8.158,−0.695)T , and θ̂M = (6.895,−0.435)T , which are not robust in the
sense of x(t)-space outliers, and θ̂MM = (−7.966, 2.924)T ,
θ̂LTS = (−7.550, 2.832)T , and θ̂CAT = (−6.183, 2.529)T which are robust, but
not deepest estimates (Figure 2 and 3). From Figure 2 and 3, it can be seen
that the LTS- and MM-estimate are close to the best deepest line for q = 3,
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while the cat line is more close to the best deepest line for q = 2.
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Fig. 2. The best deepest line (q = 2),
M- and MM-line

log(effective.temperature)

lo
g(

lig
ht

.in
te

ns
ity

)

3.6 3.8 4.0 4.2 4.4 4.6

4.
0

4.
5

5.
0

5.
5

6.
0

l1-line
l2-line
catline
LTS-line

Fig. 3. Catline, l1-, l2- and LTS-line

In the model for quadratic regression (with q = 3 and θ3 6= 0), the best para-
meter in the sense of l1 and l2 minimization is θ̂BD = (88.905,−41.734, 5.143)T ,
which is one vertex of the six-vertex polytope with maximum simplicial depth
0.137 (Figure 4). The other regarded estimates are as follows:
θ̂l2 = (82.028,−38.096, 4.671)T , and θ̂l1 = (86.412,−40.252, 4.932)T ,
θ̂LTS = (90.222,−42.200, 5.177)T , and θ̂MM = (87.021,−40.626, 4.987)T (Fig-
ure 5 and 6).
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Fig. 4. All deepest quadratic lines

log(effective.temperature)

lo
g(

lig
ht

.in
te

ns
ity

)

3.6 3.8 4.0 4.2 4.4 4.6

4.
0

4.
5

5.
0

5.
5

6.
0

BD-quadratic line
MM-quadratic line
M-quadratic line

Fig. 5. The best deepest quadratic line
(q = 3), M- and MM-line
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6 Tests for a problem in shape analysis

The North American Sunfish ”pumpkinseed” (Lepomis gibbosus) was intro-
duced to European waters about 100 years ago. In this section we want to
find out, how the relative head length of those fishes depends on their size.
Furthermore, we investigate, if this dependency can be described by the same
polynomial regression function in different European and Canadian popula-
tions.

In Canada, 85 specimens were collected in 2003 from the River Otonabee (oto)
and 117 specimens from the Looncall Lake (loon). A total of 170 specimens
were taken from thermal lagoon Topla struga near Catez (cat), Slovenia. A
total of 162 specimens were taken from Tanyards fisheries pond near Brighton
(eng). All specimens were preserved in 4% formaldehyde.

Nineteen landmarks (see Figure 7) were identified on digital photographs us-
ing IMPORPRO 3.2 software (Tomeček et.al, 2005 and Katina 2004). The
standard length (SL) of a fish is defined as the distance between landmark 10
(anterior tip of the upper jaw) and landmark 11 (caudal fin base). The line,
which contains landmark 10 and landmark 11 is called the baseline. The dis-
tance between landmark 10 and the orthogonal projection 17’ of landmark 17
(occipitum of dorsal outline) onto the baseline is called the head length in this
paper. The relative head length is the head length, divided by the standard
length.

Fig. 7. Landmarks and baseline

The original data are discrete, due to rounding errors. To make them continu-
ous, we add a small uniformly distributed random number to each observation,
such that we would obtain the original data by rounding.

At first, we test within the model for quadratic regression the hypothesis, that
the relationship between the relative head length and the standard length can
be described by a linear function. This hypothesis has to be rejected only
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for the population eng with respect to a significance level of 10%. The best
deepest linear function in the sense of Section 3.5 for eng is shown in Figure
8. The test statistics for oto, loon, cat and eng are 0.370, 0.359, 0.306 and
-0.769 (in this order), providing p-values > 70% for the first three populations
and a p-value less then 8% for the population eng (see Table 1).

Normality of ordinary least squares residuals, in both linear and quadratic
model, was rejected for all four fish populations, oto, loon, cat and eng
(p-value< 0.001) by the χ2 goodness-of-fit test. Although the data have no
normal distribution, we apply the F-test in order to compare the results
with this test. The F-test provides p-values as follows 0.794, 0.031, 0.225 and
< 0.0001. Hence, we reject the null hypothesis about linearity for populations
loon and eng with the F-test. In loon population it is due to outliers, since
the depth test does not reject the linearity. However for the population eng
it can be concluded that the linear relationship is not valid since both tests
reject the hypothesis of linearity.
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Fig. 8. The population eng

The best deepest quadratic function for eng is also seen in Figure 8. If it
would be the true regression function, then the relative head length decreases
when small fishes are growing, but when they become adult, then the relative
head length increases. We know no biological reason for this and so we test
the hypothesis, that the true regression function is convex and monotonically
decreasing all the time. This means, that the derivative of the true regression
function gθ is negative also for big fishes with a standard length of 107. Hence,
we have to test H0 : g′

θ(107) ≤ 0 and g′′
θ ≥ 0, which is equivalent to H0 : θ ∈ Θ0

with

Θ0 := {θ̃ ∈ R
3 : θ̃2 + 214 θ̃3 ≤ 0 and θ̃3 ≥ 0}.
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The boundary of this set consists on hyperplanes and thus we can calculate
the test statistic as described in Section 3.4. Note, that it is not so easy to
test this hypothesis in the classical way. The test statistic is 0.261, which is
more than the 60% quantile of the asymptotic distribution and thus we may
assume, that the true regression function is monotonically decreasing. The
best deepest decreasing quadratic function, called special BD-quadratic line,
is shown in Figure 8 and has the parameter (0.259919, −0.001380, 0.000006)T .

Now we investigate, whether the Canadian populations oto and loon can
be described by the same regression line. This can be tested within a model
for linear regression, but we could test it as well in a model for polynomial
regression of arbitrary degree. An interesting problem is to find out, which test
is the best one. The test statistic for the two-sample test is -0.049 for q = 2
(and -0.02 for q = 3), which is in both cases more than the 30% quantile of
the asymptotic distribution (see Table 1). Hence, we have no rejection. This
means, that we may assume that both regression lines are equal. Indeed, the
deepest lines for loon and oto drawn into Figure 9 are rather similar. Into
this diagram, we also draw a dashed line, that maximizes Φθ(z

1, z2), which we
call the H0-line.
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Fig. 9. Deepest lines and H0 line (q = 2)
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Fig. 10. Deepest lines and H0 line
(q = 2)

If we compare the Canadian population oto with the European population
cat, then we detect significant differences. The test statistic is -6.552 for q = 2
(and -4.733 for q = 3), which is in both cases less than the 0.5% quantile. Thus,
the hypothesis, that both populations can be described by the same regression
line has to be rejected with respect to a significance level of 1%. The deepest
lines for cat and oto as well as the line, that maximizes Φθ(z

1, z2) are drawn
into Figure 10.
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