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Abstract

Global depth, tangent depth and simplicial depths for classical and orthogonal
regression are compared in examles and properies that are usefull for calculations
are derived. Algorithms for the calculation of depths for orthogonal regression are
proposed and tests for multiple regression are transfered to orthogonal regression.
These tests are distribution free in the case of bivariate observations. For a particular
test problem, the power of tests that are based on simplicial depth and tangent depth
are compared by simulations.
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1 Introduction

Daniels (1954) introduced a regression depth for simple linear regression, which he called
a score. He derived a test for the regression parameters that is based on the distribution
of the score. Rousseeuw and Hubert (1999) gave a more appealing characterization and
extended it to multiple regression, see also Van Aelst et al (2002). They also worked
out the analogy to Tukey’s half space depth. Mizera (2002) introduced extensions of
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these depth notions to general parametrical models and named them global depth dG,
local depth dloc, and tangent depth dT , where in general dG ≤ dloc ≤ dT . He gave
sufficient conditions for their equality and showed that these depth notions are unequal
for orthogonal regression.

Mizera and Müller (2004) studied these depth notions in the location scale model
and Müller (2005) proposed asymptotic tests for linear and quadratic regression that are
based on an extension of Liu’s simplicial depth, which is nothing but the U-Statistic with
a modified tangent depth as the kernel function. The tests are based on the asymp-
totic distribution of the simplicial depth, which is a degenerated U-Statistic in the most
important cases.

Under general assumptions, Wellmann et al (2008a) derived the asymptotic distribution
for polynomial regression with polynomials of arbitrary degree and thus provided distribu-
tion free tests for testing all hypothesis of the form H0 : θ ∈ Θ0 against H1 : θ 6∈ Θ0, where
Θ0 is an arbitrary subset of the parameter space. Wellmann et al (2008a) also showed that
the asymptotic distribution for extended linear regression can be obtained by calculating
the spectral decomposition of a function which depends only on the probability law of the
vector product of the regressors. In Wellmann et al. (2008b), this result is used to derive
the asymptotic distribution also for multiple regression. This paper extends these results
to orthogonal regression.

Orthogonal regression means that a fit of a regression line or plane is measured by the
perpendicular distance of the observations to the line or plane. This is different to classical
regression, where the distance is measured parallel to the y-axis. Orthogonal regression
shall be used in particular when the role of the x- and the y-axis can be exchanged or
when the regression line shall be rotation invariant as it should be in images.

In Section 2, global depth for classical and orthogonal regression are introduced ac-
cording to Mizera (2002). But here the depths are based on the regression planes and not
on the parameters. Section 2 also provides an algorithm for calculating the global depth
for orthogonal regression in the case of three bivariate observations, which is needed to
calculate the simplicial depth for an arbitrary number of observations.

Section 3 introduces tangent depths for classical and orthogonal regression and studies
their interrelation in Theorem 1. Tangent depth for orthogonal regression was already
studied by Mizera (2002). But he characterized the orthogonal regression depth only for
two dimensions. We give a characterization for any dimension based on a different pa-
rameterization. This parameterization leads to graphical representations of domains with
constant depth. A plot of these domains is analogue to the dual plot of Rousseeuw and
Hubert (1999) for classical linear regression, but with the advantage that the observations
itselves can be included in the plot. The domains of constant depth, given in Theorem 2,
are used for the calculation of maximum depth estimates.
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In Section 4, generalized simplicial depths based on tangent depth and global depth
for orthogonal regression are introduced and compared in examples. It turns out that
simplicial depth based on global depth is more useful for estimation while simplicial depth
based on tangent depth is more appropriate for testing. The tests based on the simplical
depth with the tangent depth are treated in Section 5 in more detail. These tests are
distribution free in the case of bivariate observations. In examples, the test for testing
that the true regression line is horizontal showed to have a better power than the test of
Daniels (1954), which can also be transfered to orthogonal regression.

2 Global depth

In this section, global depths for classical and orthogonal regression are introduced.

While the global depth for classical regression depends on the absolute residuals of
observations z1, ..., zN ∈ IRq, the global depth for orthogonal regression depends on the
distances between the observations and the regression function.

Thereby, the absolute residual of an observation zn =
(

xn

yn

)
∈ IRq with xn ∈ IRq−1

with respect to a function g : IRq−1 → IR is defined as

res(g, zn) = |yn − g(xn)|,

whereas the minimum distance between an observation zn ∈ IRq and g ⊂ IRq is defined
as

dist(g, zn) = inf
z∈g

||z − zn||.

In this paper, we consider only the case that g is a hyperplane.

Definition 1 The global depth for classical regression dR
G(g, z) of a hyperplane g

with respect to given observations z = (z1, ..., zN ), zn ∈ IRq, is the smallest number m of

observations zi1 , . . . , zim that needs to be removed such that there is a hyperplane g̃ ⊂ IRq

with

res(g̃, zn) < res(g, zn)

for all n ∈ {1, ..., N}\{zi1 , . . . , zim}.

Note that this global depth is defined only for hyperplanes that are not orthogonal to
the x-plane and can thus be considered as the graph of a function. The definition of global
depth for orthogonal regression is similar, but here the distances are considered and not
the absolute residuals, so that the following definition holds for arbitrary hyperplanes.
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Definition 2 The global depth for orthogonal regression dR
G(g, z) of a hyperplane g

with respect to given observations z1, ..., zN ∈ IRq is the smallest number m of observations

zi1 , . . . , zim that needs to be removed such that there is a hyperplane g̃ ⊂ IRq with

dist(g̃, zn) < dist(g, zn)

for all n ∈ {1, ..., N}\{zi1 , . . . , zim}.

The global depth for classical regression coincides with the regression depth of Rousseuw
and Hubert (1999), whereas the global depth for orthogonal regression coincides with the
corresponding depth in Mizera (2002). The definitions are illustrated by some examples
for q = 2.

In Figure 1, all observations are on the same side of g. For classical regression the
absolute residuals have to be considered. In such a case there is always a line g̃ parallel
to g for which all absolute residuals are smaller. No observation needs to be removed, so
that dR

G(g, z) = 0.

Figure 1: dR
G(g, z) = 0 Figure 2: do

G(g, z) = 0

Figure 3: dR
G(g, z) = 0 Figure 4: do

G(g, z) = 0

For orthogonal regression we have to consider not the absolute residuals but the min-
imum distances, which are the distances in orthogonal direction. Figure 2 shows that
there is a line g̃ parallel to g for which all distances are smaller, so that do

G(g, z) = 0.
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In Figure 3 the residuals change their sign, which means that the first two observations
are below the regression line and the third observation is above the line. In this case one
can choose a point between z2 and z3 and rotate the line somewhat. In this way a line g̃

is obtained for which all absolute residuals are smaller, so that dR
G(g, z) = 0.

Figure 4 shows for this example that g̃ is also closer to all observations with respect to
the minimum distance, so that also do

G(g, z) = 0.

Figure 5: dR
G(g, z) = 1 Figure 6: do

G(g, z) = 0

Figure 7: dR
G(g, z) = 0 Figure 8: do

G(g, z) = 1

In the third example the residuals given by Figure 5 are alternating which means that
the first observation is above the line, the second is below and the third is above. It is
easy to see that there is no line g̃ for which all absolute residuals are smaller. But if we
remove an observation, namely z2, then there is a line for which all remaining absolute
residuals are smaller, so that dR

G(g, z) = 1.

Now we consider the minimum distances. The line g̃ in Figure 6 is closer to all obser-
vations so that do

G(g, z) = 0. We see that alternating residuals are not sufficient for the
orthogonal depth to be one.

We can pose the question if the depth for orthogonal regression is always smaller than
the depth for classical regression. The next example shows that this is not the case. In
Figure 7 the absolute residuals change their sign, so that dR

G(g, z) = 0. But there is no
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line which is closer to all observations, so that do
G(g, z) = 1 (see Figure 8).

2.1 Calculation of the global depth for orthogonal regression

Now we give a characterization of global depth for orthogonal regression that leads to an
algorithm for the calculation of the depth for three observations in the case q = 2. We
do not give a formal proof of this algorithm, because we think that it is clear from the
pictures. For a proof see Wellmann (2008).

In the general case with an arbitrary number of observations we can create an open
circle around each observation so that the radius is the distance between the observation
and the line g (see Figure 9). Then the global depth is nothing but the number of circles
which must be removed such that there is a line g̃ which intersects all remaining circles.

In the case of 3 observations we need to remove at most one circle, so that the depth
is at most 1, provided that the observations do not belong to the line. Furthermore, the
depth is 1 if and only if there is a line which intersects all circles. Now we propose an
algorithm for checking this condition.

If all observations belong to the same side of g then there is a line g̃ parallel to g which
intersects all circles, so that the depth is 0 (see Figure 10).

Now we consider the case that exactly two observations belong to the same side of g

and that their circles have a nonempty intersection. There is a line g̃ that intersects this
intersection and the remaining circle (see Figure 11). This line intersects all circles and
thus the depth of g is 0.

Finally we have to consider the case that exactly two circles belong to the same side of
g, but they have an empty intersection. In this case the union of all lines that intersect
both circles is bounded by the 4 tangents on both circles. In Figure 12, this union is given
by the grey area. If the remaining circle intersects this area then there is a line g̃ which
intersects all circles, so that the depth is 0. Otherwise there is no such line, so that the
depth is 1.

3 Tangent depth

The definition of tangent depth depends on the parameterization of the regression func-
tion, so that this section starts with an overview on possible parameterizations.

For classical linear regression typical parameters of a hyperplane are the intercept and

6



Figure 9: Calculation Figure 10: Step 1

Figure 11: Step 2 Figure 12: Step 3

the slopes (see Figure 13). The hyperplane gβ with β = (β1, ..., βq)
T is defined as

gβ := {(x1, ..., xq−1, y)T : y = β1 + β2x1 + ... + βqxq−1}.

Note that this parameterization excludes vertical hyperplanes.

For orthogonal regression there exists no canonical parameterization. In Mizera (2002)
a hyperplane was parameterized by the vector (s, bT )T ∈ IRq+1, where b ∈ IRq is a unit
vector orthogonal to the hyperplane and sb is the intersection of the hyperplane with the
linear space generated by b.

In this paper, we choose the point of the hyperplane with minimum distance to the
origin as the parameter (see Figure 14). This point ξ ∈ IRq belongs to the hyperplane
and is orthogonal to it. Then the hyperplane gξ is given by

gξ := {z : (z − ξ)T ξ = 0}.

Note that this parameterization must exclude hyperplanes through the origin. But, this
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is more a technical restriction, because Theorem 1 will show that the resulting tangent
depth can be extended to cover also hyperplanes through the origin.

Hyperplanes with parameterization for orthogonal regression are denoted in italic as
gξ, whereas hyperplanes with parameterization for classical regression are denotet as gβ

throughout the paper.

Figure 13: classical regres-
sion

Figure 14: orthogonal re-
gression

Definition 3 (Tangent depth for classical regression) The tangent depth for clas-

sical regression of a hyperplane gβ, β ∈ IRq with respect to given observations z =
(z1, ..., zN ) is:

dR
T (gβ, z) = min

H⊂IRq half space

0∈H

#{n : ∂
∂β

res(gβ, zn)2 ∈ H}.

Thereby, ∂
∂β

res(gβ, zn)2 denotes the gradient of the squared residual of zn at β. Roughly
speaking, the gradient for an observation zn at β is a direction in which the parameters
are worse than β. The tangent depth is the minimum number of directional vectors that
belong to a closed half space which contains the origin.

In this way, a tangent depth can be assigned to each global depth. Note that the pa-
rameterization that is used for the definition of tangent depth does not nessecarily have
to coincide with the parameterization of the statistical model. However, this parameter-
ization is appropriate, because Mizera (2002) showed that this tangent depth coincides
with the global depth for classical regression, that is,

dR
T (gβ, z) = dR

G(gβ, z).

Tangent depth for orthogonal regression is defined in the same way:
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Definition 4 (Tangent Depth for orthogonal regression) The tangent depth for

orthogonal regression of a hyperplane gξ, ξ ∈ Ξ = IRq\{0} with respect to given observa-

tions z = (z1, ..., zN ) is:

do
T (gξ, z) = min

H⊂IR2 half space

0∈H

#{n : ∂
∂ξ

dist(gξ, zn)2 ∈ H}.

The squared distance, considered as a function of ξ, is indeed differentiable since it is
well known that

dist(gξ, zn) =
|ξT (zn − ξ)|

||ξ||

for all ξ 6= 0. We will see in Figure 18 that the tangent depth for orthogonal regression
does not coincide with the corresponding global depth. Mizera (2002) showed in general,
that a global depth is always smaller than or equal to the corresponding tangent depth,
so that

do
T (gξ, z) ≥ do

G(gξ, z).

He also showed that the tangent depth for classical regression has the following char-
acterization:

dR
T (gβ, z) = min

u 6=0
#{n : sign(yn − gβ(xn)) uT

(
1

xn

)
≥ 0},

where zn =
(

xn

yn

)
with xn ∈ IRq−1. A similar formula holds for orthogonal regression:

Lemma 1 For all observations z1, ..., zN ∈ IRq and all ξ ∈ IRq\{0}, the tangent depth for

orthogonal regression is given by

do
T (gξ, z) = min

u 6=0
#{n : sign

(
ξT (zn − ξ)

||ξ||

)
uT

(
ξT (zn + ξ)

ξT ξ
ξ − zn

)
≥ 0}.

Proof
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∂

∂ξ
dist(gξ, zn)2 =

∂

∂ξ

(ξT (zn − ξ))2

ξT ξ

=
∂

∂ξ
(ξT zn − ξT ξ)2 · (ξT ξ)−1

= (ξT zn − ξT ξ)2 ·

(
−

1

(ξT ξ)2

)
· 2ξ + 2(ξT zn − ξT ξ)(zn − 2ξ) · (ξT ξ)−1

= −2

(
ξT (zn − ξ)

ξT ξ

)2

ξ + 2
ξT (zn − ξ)

ξT ξ
(zn − 2ξ)

= −2
ξT (zn − ξ)

ξT ξ

(
ξT (zn − ξ)

ξT ξ
ξ + 2ξ − zn

)

= −2
ξT (zn − ξ)

ξT ξ

(
ξT (zn + ξ)

ξT ξ
ξ − zn

)
.

= −2
|ξT (zn − ξ)|

ξT ξ
sign

(
ξT (zn − ξ)

)(ξT (zn + ξ)

ξT ξ
ξ − zn

)
.

It follows that

do
T (gξ, z) = min

u 6=0
#{n : uT ∂

∂ξ
dist(gξ, zn)2 ≥ 0}

= min
u 6=0

#{n : sign

(
ξT (zn − ξ)

||ξ||

)
uT

(
ξT (zn + ξ)

ξT ξ
ξ − zn

)
≥ 0}. 2

Although this formula provides a possibility to calculate the depth, the formula seems
not as simple and useful as the formula for classic regression. However, the next Theorem
shows that the tangent depth for orthogonal regression of a hyperplane gξ is nothing
but the tangent depth for classical regression of the x-plane with respect to transformed
observations.

Theorem 1 Let ξ ∈ IRq\{0} and let D := 1
||ξ||

(
B

ξT

)
such that the rows of B ∈ IR(q−1)×q

are a basis of (IRξ)⊥.

Then for all z1, ..., zN ∈ IRq we have

do
T (gξ, (z1, ..., zN )) = dR

T (g0, (D(zn − ξ))n=1,...,N ).

Proof
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For n = 1, ..., N let xn ∈ IRq−1, yn ∈ IR such that
(

xn

yn

)
= D(zn − ξ) =

1

||ξ||

(
Bzn

ξT zn

)
−

1

||ξ||

(
Bξ

ξT ξ

)

=
1

||ξ||

(
Bzn − 0

ξT zn − ξT ξ

)

=

(
1

||ξ||
Bzn

ξT (zn−ξ)
||ξ||

)
.

With A := 1
||ξ||

( 1
||ξ||

0

0 I

)(
ξT

−B

)
we obtain

A

(
ξT (zn + ξ)

ξT ξ
ξ − zn

)
=

1

||ξ||

( 1
||ξ||

0

0 I

)[
ξT (zn + ξ)

ξT ξ

(
ξT ξ

−Bξ

)
−

(
ξT zn

−Bzn

)]

=
1

||ξ||

( 1
||ξ||

0

0 I

)(
ξT (zn + ξ) − ξT zn

0 + Bzn

)

=
1

||ξ||

( 1
||ξ||

0

0 I

)(
ξT ξ

Bzn

)

=

(
1

1
||ξ||

Bzn

)

Since the matrix A is invertible and does not depend on the observations, we obtain with
Lemma 1:

do
T (gξ, (z1, ..., zN )) = min

u 6=0
{n : sign

(
ξT (zn − ξ)

||ξ||

)
uT

(
ξT (zn + ξ)

ξT ξ
ξ − zn

)
≥ 0}

= min
u 6=0

{n : sign(yn)(AT u)T

(
ξT (zn + ξ)

ξT ξ
ξ − zn

)
≥ 0}

= min
u 6=0

{n : sign(yn)uT A

(
ξT (zn + ξ)

ξT ξ
ξ − zn

)
≥ 0}

= min
u 6=0

{n : sign(yn)uT

(
1

1
||ξ||

Bzn

)
≥ 0}

= min
u 6=0

{n : sign(yn)uT

(
1

xn

)
≥ 0}

= dR
T (g0, (D(zn − ξ))n=1,...,N ).

2

Note that for any hyperplane gξ we can choose D = Dξ as a rotation matrix with
Dξξ =

(
0

||ξ||

)
. In this case, the transformation

Tgξ
(zn) := Dξ(zn − ξ)
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shifts and rotates the observations and the regression function such that the regression
function becomes the x-plane. This means that the tangent depth for orthogonal regres-
sion of gξ is nothing but the tangent depth for classical regression of the x-plane g0 with
respect to the shifted and rotated observations Tgξ

(z1), ..., Tgξ
(zN). We extend this trans-

formation T canonically to cover also hyperplanes through the origin. If g is a hyperplane
through the origin, i.e. cannot expressed by gξ with ξ 6= 0, then we use only a rotation
Tg which rotates g to g0 in the x-plane. Hence we define the tangent depth of arbitrary
hyperplanes g ⊂ IRq by

do
T (g, (z1, ..., zN )) := dR

T (g0, (Tg(z1), ..., Tg(zN))).

Thus, algorithms for the calculation of tangent depth for classical regression can be
used to calculate tangent depth for orthogonal regression. However, for the calculation of
maximum depth estimators, also the level sets of the tangent depth need to be known.

Since the tangent depth is the hafspace depth of 0 with respect to the gradients, a
sufficient small shift of their positions would not change the depth, provided that the
gradients are in general position (for a proof see Wellmann, 2008). Thus, a parameter ξ

can be on the boundary of a level set only if q gradients at ξ are linearly dependent. It
follows that the set

Border(z) :=
⋃

{n1,...,nq}⊂{1,...,N}

{
ξ : det

(
∂

∂ξ
dist(gξ, zn1

)2, ...,
∂

∂ξ
dist(gξ, znq

)2

)
= 0

}

divides the parameter space into domains with constant depth. The next theorem gives
a simple representation of this set.

Theorem 2 Let z1, ..., zN ∈ IRq, such that for all {n1, ..., nq} ⊂ {1, ..., N} the vectors

zn1
− znq

, ..., znq−1
− znq

are linearly independent. In the case q = 2 this means that the

observations are pairwise different. The set

Border(z) =
N⋃

n=1

∂IB
(zn

2
, ||

zn

2
||
)

∪
⋃

{n1,...,nq}⊂{1,...,N}

∑

j<q

IR(znj
− znq

)

divides ξ = IRq\{0} into domains with constant tangent depth for orthogonal regression.

Thereby, IB (x, r) denotes the open ball with center x and radius r.

Proof

Let n1, ..., nq ∈ {1, ..., N} be pairwise different and ξ 6= 0. With the formula for the
gradients, given in the proof of Lemma 1, we obtain
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0 = det

(
∂

∂ξ
dist(gξ, zn1

)2, ...,
∂

∂ξ
dist(gξ, znq

)2

)

=

(
−2

ξT ξ

)q
(

q∏

j=1

ξT (znj
− ξ)

)
det

(
ξT (zn1

+ ξ)

ξT ξ
ξ − zn1

, ...,
ξT (znq

+ ξ)

ξT ξ
ξ − znq

)

if and only if the determinant on the right hand side is equal to 0, or if there is a
j ∈ {1, ..., q} with ξT (znj

− ξ) = 0.

Let the matrices A and B be as in the proof of Theorem 1. Then

0 = det

(
ξT (zn1

+ ξ)

ξT ξ
ξ − zn1

, ...,
ξT (znq

+ ξ)

ξT ξ
ξ − znq

)

= det

(
A−1

(
1 · · · 1

1
||ξ||

Bzn1
· · · 1

||ξ||
Bznq

))

=
det (A−1)

||ξ||q−1
det

(
1 · · · 1

Bzn1
· · · Bznq

)

=
det (A−1)

||ξ||q−1
det

(
0 · · · 0 1

Bzn1
− Bznq

· · · Bznq−1
− Bznq

Bznq

)

=
det (A−1)

(−||ξ||)q−1
det
(
B(zn1

− znq
), ..., B(znq−1

− znq
)
)

if and only if there is a λ ∈ IRq−1, λ 6= 0 with 0 =
∑
j<q

λjB(znj
− znq

) = B
∑
j<q

λj(znj
− znq

).

Since the rows of B are a basis of (IRξ)⊥ and since zn1
− znq

, ..., znq−1
− znq

are linearly
independent, this means that 0 6=

∑
j<q

λj(znj
− znq

) ∈ ((IRξ)⊥)⊥ = IRξ, so that

∑

j<q

IR(znj
− znq

) ∩ IRξ 6= {0}.

But this holds if and only if ξ ∈
∑
j<q

IR(znj
− znq

).

Since
ξT (znj

− ξ) = 0 ⇔ ||ξ −
znj

2
|| = ||

znj

2
|| ⇔ ξ ∈ ∂IB

(znj

2
, ||

znj

2
||
)

we obtain
{

ξ : det

(
∂

∂ξ
dist(gξ, zn1

)2, ...,
∂

∂ξ
dist(gξ, znq

)2

)
= 0

}

=

q⋃

j=1

∂IB
(znj

2
, ||

znj

2
||
)

∪
∑

j<q

IR(znj
− znq

)
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and the claim follows. 2

For calculating domains with constant depth, Rousseuw and Hubert (1999) developed
a concept of duality for classical linear regression. This means in particular that each
observation corresponds to a line in the parameter space. For orthogonal regression, we
have no such duality. Here also, each observation corresponds not to a line, but to a circle.
But additionally we have to consider lines which correspond to pairs of observations.

An Example with three observations for q = 2 may illustrate the domains of constant
depth for orthogonal regression. Figure 15 shows according to Theorem 2 how the pa-
rameter space for orthogonal regression may be divided up into domains with constant
depth by circles and lines. Each circle corresponds to one observation.

The observations can be plotted into the same diagram (see Figure 16). For each
observation zn we obtain one circle in the parameter space. This circle contains the
observation and the origin and has centre zn

2
. Furthermore, for each pair of observations

we obtain one line through the origin within the parameter space. The directional vector
of this line is the difference between the corresponding observations.

Figure 17 shows for a particular parameter ξ the corresponding regression line. Theo-
rem 1 shows that for the calculation of tangent depth for orthogonal regression, we have
to imagine that the regression line is the x-axis and then to calculate the tangent depth for
classical degression, which is equal to the global depth for classical regression. For three
observations, this depth is 1 if and only if the residuals are alternating. In our case, the
first observation would be below the line, the second one above, and the third observation
is below, so that the residuals are alternating and thus, the depth of the parameter is 1.

In Figure 18, all domains with depth one are coloured black and the remaining domains
have depth 0. Two regression lines are plotted into the diagram for which the tangent
depth is 1, as can be seen with a right angle triangular ruler. The increasing line has
depth 1, although all observations are clother to the decreasing line. This shows, that
global depth and tangent depth do not coincide for orthogonal regression, because the
global depth of the increasing line is 0. Moreover, the tangent depth for orthogonal
regression is 1, if the residuals in orthogonal direction are alternating, no matter how far
the observations are away from the regression line. This is clearly not a desirable property
of a depth function, so that we expect that global depth is more appropriate for parameter
estimation.

Figure 19 and Figure 20 show the level sets of tangent depth and global depth for
orthogonal regression with respect to 3 other observations. Again, the parameter space
is divided up into domains with constant tangent depth by circles and lines. However,
for global depth, the regions with depth one are much smaller and the boundaries of the
domains are not completely contained in the union of circles and lines.
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Figure 15: The border Figure 16: Observations included

Figure 17: Parameterization Figure 18: Level sets

4 Simplicial depth

This section introduces a third depth notion, namely an extension of Liu’s simplicial depth
for multivariate location. Each depth notion d that is intruduced in the previous sections
gives reason to the definition of a different simplicial depth:

Definition 5 (Simplicial depth) The simplicial depth of a hyperplane g ⊂ IRq and

observations z = (z1, ..., zN ) that is based on a depth notion d is defined as

Sd(g, z) =

(
N

q + 1

)−1 ∑

1≤n1<...<nq+1≤N

d(g, (zn1
, ..., znq+1

)).

That is, for a given hyperplane g and given observations we calculate the depth d for
each subset of q +1 observations and the simplicial depth is defined as the mean of theses
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Figure 19: global depth Figure 20: tangent depth

values.

We obtain a total of 3 different simplicial depths. One is based on the global depth
for orthogonal regression, one on the tangent depth for orthogonal regression, and one is
based on the global depth for classical regression.

Figure 21 and Figure 22 compare the simplicial depths for orthogonal regression by
an example with 15 observations and q = 2. The Figures show the parameter space
and the grey level of each parameter corresponds to the depth of this parameter. The
black parameters have maximum depth. Also the observations and the true regression
line are plotted into the diagrams. The used parameterization for orthogonal regression
yield that the parameter of the true regression line is the point of the line with minimum
distance to the origin. Note that the point in the diagram which marks the origin is not
an observation.

Figure 21: simplicial global depth Figure 22: simplicial tangent depth
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If the simplicial depth is based on global depth (Figure 21), then the true parameter
belongs to the black area, as can be seen with a right-angle triangular ruler. Thus, the
simplicial depth based on global depth estimates the true parameter well.

If the simplicial depth is based on tangent depth (Figure 22), then not only the true
parameter has a high depth but also parameters far away from the true parameter. This
shows that the simplicial depth based on tangent depth is not appropriate for parameter
estimation. But it can be seen, that there are also many parameters with very small depth
and this shows that tangent depth could be appropriate for tests, if under the alternative
all parameters (resp. hyperplanes) from the null hypothesis have small depths.

Indeed the simplicial depth based on tangent depth may be more appropriate for tests
than the depth which is based on global depth, because simulations showed that the
distribution of the maximum depth depends much on the underlying distribution of the
observations if the simplicial depth is based on global depth. This is not the case for
simplicial depth based on tangent depth since in this case the asymptotic behaviour
under the null hypothesis is the same as for simplicial depth for classical regression and
this does not depend on the unknown parameters. This is shown in the next section.

5 Tests

Take Θ to be the parameter space of the statistical model. To allow also for semipara-
metrical models we do not assume that Θ is finite dimensional. Let G be the set of all
hyperplanes in IRq and for θ ∈ Θ let g̃(θ) ∈ G.

Let the q-variate random vectors Z1, ..., ZN be independent and identically distributed
and for θ ∈ Θ suppose that

• Pθ(Yn > 0|Xn) = 1
2
,

• Pθ(Yn < 0|Xn) = 1
2
,

• Xn has a continuous distribution,

where
(

Xn

Yn

)
= Tg̃(θ)(Zn) and Yn is a one dimensional random variable. In the case q > 2

we assume additionally that Xn has a multivariate Cauchy distribution.

For orthogonal regression, usually an error-in-variable model is assumed. The following
error-in-variable model is a special case of the general model, defined above:
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Example 1 Let θ ∈ Θ and let Z1, ..., ZN be i.i.d. bivariate, continuous distributed
random variables such that

Zn = Vn + En,

where Vn : Ω → g̃(θ) and the error En is radially symmetric distributed given Vn.

This model satisfies the assumptions, given above.

Proof

We can write the transformation Tg̃(θ) as Tg̃(θ)(z) = D(z − w) with a rotation matrix D.

Let
(

Sn

0

)
= Tg̃(θ)(Vn) and

(
Un

Yn

)
= DEn. Note that Tg̃(θ)(Zn) =

(
Xn

Yn

)
, where Xn = Un + Sn.

Since
(

Un

Yn

)
is radially symmetric distributed given Vn, we have Pθ(Yn > 0|Vn, Un) = 1

2
.

Since Xn can be written as a function of Vn and Un, it follows that Pθ(Yn > 0|Xn) = 1
2
.

The second assumption of the general model follows immediately and the third as-
sumption holds by definition. 2

Because of Theorem 1, the asymptotic distribution of the simplicial depth for orthog-
onal regression which is based on tangent depth is equal to the asymptotic distribution
of the simplicial depth for classical regression, given in Wellmann et al. (2008), so that
tests for testing

H0 : g̃(θ) ∈ G0 ⊂ G against H1 : g̃(θ) 6∈ G0

can be based on on the test statistic

T (Z) = N

(
sup
g∈G0

Sdo
T
(g, Z) −

1

2q

)
. (1)

H0 is rejected, if the test statistic is less than the α-quantile of the asymptotic distribution
of the simplicial depth. This test is indeed an asymptotic α-level test, since for any c ∈ IR

and all θ ∈ Θ with g̃(θ) ∈ G0 we have

Pθ

(
sup
g∈G0

Sdo
T
(g, Z) ≤ c

)
≤ Pθ

(
Sdo

T
(g̃(θ), Z) ≤ c

)
. (2)

In the case q = 2 the distribution of the tangent depth under the above assumptions is
given in Daniels (1954), see also Van Aelst et. al (2002) so that alternatively, the test
could be based on the test statistic

T (Z) = sup
g∈G0

do
T (g, Z).

and H0 is rejected, if the test statistic is less than the α-quantile of the distribution of
the tangent depth.
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5.1 Power comparison with simulated data

We compared the power of both tests in the case q = 2, where the null hypothesis is
tested that the true regression line is horizontal, so that G0 consists on all horizontal lines.
We simulated true observations V1, ..., VN on a line g with dist(g, 0) = 1 for which the
angle between g and the x-axis is 0 ≤ γ ≤ π

4
. That is, we tested H0 : γ = 0 against

H1 : 0 < γ ≤ π
4
.

We used the Cauchy distribution for power comparisons in order to simulate outliers. The
true observations are simulated such that Tg(Vn) =

(
Sn

0

)
where Sn is Cauchy distributed

with location parameter 0 and scale parameter 4.

The observations Z1, ..., ZN satisfy

Zn = Vn + En with En ∼ Cauchy2(0, I),

which means that the Error En has a centered, bivariate Cauchy Distribution with the
identity matrix as the scatter matrix.

Figure 23: Simulated observations

All tests are performed to the level α = 0.05. Figure 23 shows 50 simulated observa-
tions, the true regression line with γ = 0.3, and a horizontal line from the null hypothesis.
In this example the null hypothesis was rejected with the simplicial depth test. Figures
24 and 25 show the probability to make the β-error for different values of γ and different
sample sizes.

It can be seen that both tests are indeed α-level tests with α = 0.05 because for γ = 0,
both lines are above 0.95. It can be seen also that the simplicial depth test is better in
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Figure 24: 50 observations
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Figure 25: 100 observations

both examples than the tangent depth test because the curve of the simplicial depth test
is below the other one. For 50 observations simulated with 0.3 ≤ γ ≤ π

4
the nullhypothesis

was rejected in nearly all cases by the simplicial depth test.

Since in Equation (1), the depth is maximized over several parameter values, the true
level of the test is smaller than α (see Equation 2), so that the power is not very good for
small γ. As a heuristic, we propose to use not (1) as the test statistic, but

T (Z) = N

(
Sd0

T
(ĝ(Z), Z) −

1

2q

)
,

where ĝ(Z) is the horizontal line with intercept med(Z1,2, ..., ZN,2). The resulting power
function is also given in Figures (24) and (25). Further improvement for this particular
test could be achieved by calculating the exact distribution of Sd0

T
(ĝ(Z), Z).
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