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Abstract

A general approach for developing distribution free tests for general linear models
based on simplicial depth is applied to multiple regression. The tests are based
on the asymptotic distribution of the simplicial regression depth, which depends
only on the distribution law of the vector product of regressor variables. Based
on this formula, the spectral decomposition and thus the asymptotic distribution
is derived for multiple regression through the origin and multiple regression with
Cauchy distributed explanatory variables. A simulation study suggests that the
tests can be applied also to normal distributed explanatory variables. An application
on multiple regression for shape analysis of fishes demonstrates the applicability of
the new tests and in particular their outlier robustness.

Keywords: Degenerated U-statistic, distribution-free tests, multiple regression, outlier
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1 Introduction

Liu (1988, 1990) used the half space depth of Tukey (1975) to define simplicial depth of
a multivariate location parameter θ ∈ Θ = IRq in a sample z1, ..., zN ∈ IRq as

dS(θ, (z1, ..., zN )) =

(
N

q + 1

)−1 ∑

1≤n1<n2<...<nq+1≤N
II{d(θ, (zn1 , ..., znq+1)) > 0}, (1)
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where d is the half space depth of Tukey and II denotes the indicator funtion. This depth
counts the simplices spanned by q + 1 data points which are containing the parameter θ.
Since Tukey (1975), several other depth notions were introduced. Each of them can be
used as depth d in (1) leading to several different simplicial depth notions. Several depth
notions can be obtained from the book of Mosler (2002) and the references in it. If d is the
regression depth of Rousseeuw and Hubert (1999), then dS is called simplicial regression
depth. General concepts of depth were introduced and discussed by Zuo and Serfling
(2000a,b) and Mizera (2002). Mizera (2002) in particular generalized the regression depth
of Rousseuw and Hubert (1999) by basing it on quality functions instead of squared
residuals. This approach makes it possible to define the depth of a parameter value with
respect to given observations in various statistical models via general quality functions.
Appropriate quality functions are in particular likelihood functions as studied by Mizera
and Müller (2004) for the location - scale model and by Müller (2005) for generalized
linear models.

Any concept of data depth can be used to generalize the notion of ranks and to derive
distribution free tests by generalizing Wilcoxon’s rank sum test. Nevertheless only few
papers deal with tests based on data depth. Liu (1992) and Liu and Singh (1993) proposed
distribution-free multivariate rank tests based on depth notions. While the asymptotic
normality is derived for several depth notions for distributions on IR1, it is shown only
for the Mahalanobis depth for distributions on IRk, k > 1. Hence it is unclear how to
generalize the approach of Liu and Singh to other situations. More successful distribution
free tests are provided by the concept of ranks and signs based on the multivariate Oja
median (see Oja 1983). For an overview of this methods see Oja (1999). However this
approach provides only tests for multivariate data and does not concern regression models.
Bai and He (1999) derived the asymptotic distribution of the maximum regression depth
estimator. However, this asymptotic distribution is given implicitly so that it is not
convenient for testing. Tests for regression based on depth notions were only derived by
Van Aelst et al. (2002), Müller (2005) and Wellmann et al. (2008). Van Aelst et al.
(2002) even derived an exact test based on the regression depth of Rousseeuw and Hubert
(1999) but did it only for linear regression.

Müller (2005) and Wellmann et al. (2008) used the fact that any simplicial depth is a
U-statistic with kernel function

ψθ(zn1 , ..., znq+1) = II{d(θ, (zn1 , ..., znq+1)) > 0}.

For U-statistics the asymptotic distribution is known. However, the U-statistic is de-
generated for most simplicial depth notions so that the spectral decomposition of the
conditional expectation

ψ2
θ(z1, z2) := Eθ(ψθ(Z1, . . . , Zq+1)|Z1 = z1, Z2 = z2) − Eθ(ψθ(Z1, . . . , Zq+1)) (2)

is needed to derive the asymptotic distribution. But as soon as the spectral decomposition
of (2) is known, asymptotic tests can be derived for any hypothesis of the form H0 : θ ∈ Θ0
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where Θ0 is an arbitrary subset of the parameter space Θ. These tests are based on the
test statistic T (z1, . . . , zN) := supθ∈Θ0

Tθ(z1, . . . , zN), where Tθ(z1, . . . , zN) is defined as

Tθ(z1, . . . , zN) := N (dS(θ, (z1, . . . , zN)) − µθ) (3)

with µθ = Eθ(ψθ(Z1, . . . , Zq+1)) (see Müller 2005 and Wellmann et al. 2008).

The spectral decomposition of (2) was derived by Müller (2005) for linear and quadratic
regression by solving differential equations. Wellmann et al. (2008) extended this result to
polynomial regression with polynomials of arbitrary degree by proving a general formula of
(2) and then specifying the general formula for polynomial regression so that the spectral
decomposition can be found by Fourier series representation.

The general formula can be specified also for multiple regression so that a spectral
decomposition of (2) can be derived for this case as well. This is shown in this paper.

In Section 2, the general approach with this general formula is presented. In particular
the assumptions for this general approach are given in this section. In Section 3 the general
formula is specified for multiple regression through the origin. Based on the specified
formula the spectral decomposition is derived, which is given by spherical functions and
eigenvalues depending on Gegenbauer functions.

The asymptotic distribution for multiple regression with intercept, where the regressors
have Cauchy distribution, is given in Section 4. This model is traced back to multiple
regression through the origin by multiplying the regressors and the dependent variables
with additional random variables Sn. The simulation study, which is presented at the end
of Section 4 suggests, that the tests can be applied also to normal distributed explanatory
variables.

Section 5 provides some applications on tests in multiple regression through the origin
with two explanatory variables in the shape analysis of fishes. These examples in par-
ticular show that the new tests possess high outlier robustness. All proofs are given in
Section 6.

2 The general case

We assume a statistical model for i.i.d. random variables Z1, ..., ZN with values in Z ⊂
IRp, p ≥ 1 and parameter space Θ = IRq. We choose functions h : Z → IR and v : Z → IRq

and call

Yn := h(Zn) the dependent variable,
Xn := v(Zn) the regressor, and
Sn(θ) := sign(Yn −XT

n θ), θ ∈ IRq, the sign of the residual.
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We assume that for all θ ∈ Θ:

• Pθ(S1(θ) = 1|X1) ≡
1

2
a.s., (4)

• Pθ(S1(θ) = 0|X1) ≡ 0 a.s., and

• Pθ(X1, . . . , Xq are linearly dependent) = 0.

The last two conditions of (4) are easily satisfied for example by continuous distri-
butions. Depending on the distribution of Zn, the first condition can be satisfied by
appropriate transformations v and h. The first condition in particular implies that the
true regression function is in the center of the data, which means that the median of the
residuals is zero.

We denote random variables by capital letters and realizations by small letters. The
depth of θ ∈ Θ for observations z = (z1, ..., zN ) is given by

dT (θ, z) = min
u 6=0

#{n : sn(θ) u
Tv(zn) ≥ 0}.

This depth coincides with the regression depth of Rousseeuw and Hubert (1999) and
with Definition 2 from Wellmann et al. (2008), if the quality functions Gzn

(θ) = −(h(zn)−
v(zn)

T θ)2 are used. It is a tangent depth in the sense of Mizera (2002).

This tangent depth has the disadvantage, that it provides a simplicial depth which
attains rather high values in subspaces of the parameter space. This is in particular a
disadvantage in testing if the aim is to reject the null hypothesis. To avoid this disad-
vantage, we introduce a modified version of the depth dT , called harmonized depth. The
harmonized depth of θ ∈ Θ with respect to observations z1, ..., zq+1 is defined as

ψθ(z1, . . . , zq+1) =

{
dT (θ, (z1, . . . , zq+1)), if sn(θ) 6= 0 for n = 1, ..., q + 1

0, otherwise,

so that the simplicial depth is given by

dS(θ, z) =

(
N

q + 1

)−1 ∑

1≤n1<n2<...<nq+1≤N
ψθ(zn1 , ..., znq+1).

Under the assumptions (4) we have

µθ = Eθ(ψθ(Z1, . . . , Zq+1)|Z1 = z1) =
1

2q

(see Wellmann et al. (2008)), so that dS(θ, z) is a degenerated U-statistic. Hence the
spectral decomposition of (2) is needed. This can be derived by the following Proposition
1 of Wellmann et al. (2008).
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Proposition 1 Under the assumptions (4), the conditional expectation (2) satisfies

ψ2
θ(z1, z2) =

s1(θ)s2(θ)

2q−1

(
Pθ(x

T
1W xT2W < 0) − 1

2

)
,

where W := X3 × ...×Xq+1 is the vector product of X3, . . . , Xq+1.

Recall that the vector product w = x3 × · · · × xq+1 of x3, ..., xq+1 ∈ IRq is the gradient
of the linear function x 7→ det(x3, ..., xq+1, x). For instance see Storch and Wiebe (1990,
p 362 ff.). The vector w is orhogonal to x3, ..., xq+1.

Because of this representation, only the spectral decomposition of the kernel K, defined
by

K(x1, x2) := Pθ(x
T
1W xT2W < 0) − 1

2
, for x1, x2 ∈ IRq (5)

is needed. As soon as the spectral decomposition is given by

K(x1, x2) =
∞∑

j=1

λjϕj(x1)ϕj(x2) in IL2

(
PX1 ⊗ PX1

)
, (6)

where (ϕj)
∞
j=1 is an orthonormal system (ONS) in IL2

(
PX1

)
and λ1, λ2, ... ∈ IR, then the

asymptotic distribution of the simplicial depth satisfies

N
(
dS(θ, (Z1, . . . , ZN)) − 1

2q
) L−→

∞∑

l=1

(q + 1)!

(q − 1)!2q
λl
(
Ul

2 − 1
)
, (7)

where U1, U2, ... are i.i.d. random variables with U1 ∼ N (0, 1) (see e.g. Lee 1990, p.
79, 80, 90, Witting and Müller-Funk, p. 650). If the distribution of the vector product
W := X3 × ... ×Xq+1 does not depend on θ, which is the case for usual regressors, then
the asymptotic distribution is independent of θ.

Then any hypothesis of the form H0 : θ ∈ Θ0, where Θ0 is an arbitrary subset
of the parameter space Θ, can be tested by using the test statistic T (z1, . . . , zN) :=
supθ∈Θ0

Tθ(z1, . . . , zN), where Tθ(z1, . . . , zN) is defined by (3) with µθ = 1
2q . The null

hypothesis H0 is rejected if T (z1, . . . , zN) is less than the α-quantile of the asymptotic
distribution of Tθ(Z1, . . . , ZN).

3 Multiple regression through the origin

Assuming a model for multiple regression through the origin,

Yn = θ1Xn,1 + ...+ θqXn,q + En = XT
n θ + En
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we suppose that (4) holds and that there is an invertible matrix A ∈ IRq,q, such that
1

||AXn||AXn is uniformly distributed on the unit sphere. This is in particular the case, if
Xn has a elliptical distribution like the multivariate normal distribution with mean zero.
In order to derive the asymptotic distribution of the simplicial depth for this regression
model, we have to simplify the kernel function K given by equation (5). By using that
with 1

||AX3||A X3, ...,
1

||AXq+1||A Xq+1 also the vector product is uniformly distributed on

the unit sphere, we obtain the following proposition.

Proposition 2 For all x1, x2 ∈ IRq\{0} we have

K(x1, x2) =
1

π
arccos

(
<

Ax1

||Ax1||
,
Ax2

||Ax2||
>

)
− 1

2
.

The value K(x1, x2) depends only on the angle between Ax1 and Ax2. In Fenyö and
Stolle (1983) it is shown, that we thus obtain the required eigenvalues, if we calculate
some integrals, in which so called Gegenbauer functions occur. Therefor, let TK defined
by

TK : IL2(P
X1) → IL2(P

X1) with TKf(s) =

∫
K(s, t)f(t) dPX1(t)

be the integral operator based on K(x1, x2). We obtain the following result:

Proposition 3 Let S ⊂ IRq be the unit sphere, where q ≥ 2.
Let K ∈ C(S × S) be the function K(s, t) := 1

π
arccos(< s, t >) − 1

2
for all s, t ∈ S.

The values

λ0 := 0

λp := −1

2
τq

(
Γ
(
q

2

)
Γ
(
p

2

)

Γ
(
q

2
+ p

2

) sin
(
p

2
π
)

π

)2

for p ∈ IN

are the eigenvalues of the integral operator TK, where τq = 2 π
q
2

Γ
(

q
2

) is the q−1-dimensional

volume of the sphere. For p ∈ IN , the corresponding eigenfunctions with respect to the
uniform measure v on S with v(S) = τq are the orthogonalized and normalized spherical

functions S
(n)
p,1 , . . . , S

(n)
p,up of degree p, where n := q − 2. By Fenyö and Stolle (1983) we

have up = (p+n−1)!
p! n!

(2p+ n).

Let
(
S

(q−2)
(p,k)

)
(p,k)∈I

be the family of orthogonalized and normalized spherical functions

from Proposition 3 with I := {(p, k) ∈ IN2 : k ≤ up} and for j ∈ I let ϕj(x) :=
√
τq S

(q−2)
j

(
1

||A x||A x
)
.
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Because of 1
||AX1||AX1 ∼ 1

τq
v, we obtain for all i, j ∈ I:

∫
ϕiϕj d P

X1 =

∫ √
τqS

(q−2)
i

( 1

||A x||A x
)√

τqS
(q−2)
j

( 1

||A x||A x
)
PX1(d x)

= τq

∫
S

(q−2)
i

(
1

||AX1||
AX1

)
S

(q−2)
j

(
1

||AX1||
AX1

)
d P

= τq

∫
S

(q−2)
i S

(q−2)
j d P

1
||A X1||

AX1

=
τq

τq

∫
S

(q−2)
i S

(q−2)
j d v.

Hence, (ϕj)j∈I is an ONS in IL2

(
PX1

)
. From the previous propositions we conclude, that

in IL2

(
PX1 ⊗ PX1

)
we have:

K(x1, x2) =
1

π
arccos

(
<

A x1

||A x1||
,
A x2

||A x2||
>

)
− 1

2

=
∑

(p,k)∈I
λpS

(q−2)
(p,k)

(
1

||A x1||
A x1

)
S

(q−2)
(p,k)

(
1

||A x2||
A x2

)

=
∑

(p,k)∈I

λp

τq

√
τqS

(q−2)
(p,k)

(
1

||A x1||
A x1

)
√
τqS

(q−2)
(p,k)

(
1

||A x2||
A x2

)

=
∑

(p,k)∈I

λp

τq
ϕ(p,k)(x1)ϕ(p,k)(x2).

Hence with (7), we immediately get the next theorem:

Theorem 1 Suppose, that there is an invertible matrix A ∈ IRq,q with q ≥ 2, such that
1

||AXn||A Xn is uniformly distributed on the unit sphere and suppose that assumption (4)
holds. Let λ1, λ2, ... and u1, u2, ... be as in the previous proposition.

Then there are i.i.d. random variables U1, U2, ... with Up ∼ χ2
up

such that

N
(
dS(θ, (Z1, . . . , ZN)) − 1

2q
) L−→

∞∑

p=1

(q + 1)!

(q − 1)!2q
λp

τq

(
Up − up

)
.

A simple possibility for estimating the quantiles is the generation of random numbers
of the distribution. The quantiles given in Table 1 were calculated by computing 10000
random numbers of the distribution (only the first 150 summands). The calculation of
the quantiles was repeated 500 times. The means of these quantiles are given in the
table. The 99.5% confidence band is ±0.01 at most for each estimated quantile. The test
statistic for multiple regression can be calculated similarly as for polynomial regression
described in Wellmann et al. (2007). But here the calculation of the simplicial depth of a
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given parameter is based on Lemma 1 in Wellmann et al. (2008) by checking if sn1(θ)xn1

is a linear combination of sn2(θ)xn2 , ..., snq+1(θ)xnq+1 with negative coefficients.

Table 1: Means of the simulated quantiles for multiple regression

α-quantile q = 2 q = 3 q = 4

0.5% -2.607 -1.845 -1.222
1.0% -2.189 -1.566 -1.044
2.0% -1.771 -1.284 -0.863
2.5% -1.635 -1.192 -0.805
5.0% -1.216 -0.905 -0.619

10.0% -0.795 -0.612 -0.426
20.0% -0.368 -0.310 -0.224
30.0% -0.127 -0.126 -0.099
40.0% 0.048 0.008 -0.006
50.0% 0.183 0.116 0.072
60.0% 0.293 0.209 0.140
70.0% 0.388 0.292 0.203
80.0% 0.473 0.373 0.265
90.0% 0.554 0.456 0.331
95.0% 0.600 0.504 0.373
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4 Multiple regression with intercept

We derive the asymptotic distribution of the simplicial depth for different models of
multiple regression with intercept as follows:

We define two different statistical models with different simplicial depths. We want to
calculate the asymptotic distribution of the simplicial depth dS for a statistical model
(ZN ,A,P) with P = {⊗N

n=1Pθ : θ ∈ Θ}. We consider an other statistical model
(Z̃N , Ã, P̃) with P̃ = {⊗N

n=1P̃θ : θ ∈ Θ} and in this model, we define the simplicial
depth d̃S. Assume that there is a transformation ϕ : Θ → Θ of the parameters, such
that (⊗N

n=1Pθ)
dS(θ,·) = (⊗N

n=1P̃ϕ(θ))
d̃S(ϕ(θ),·). If the asymptotic distribution of the simplicial

depth in the second model does not depend on the unknown parameter, it follows that
the asymptotic distribution is equal in both models.

To prove the next Lemma, we add to the random vectors Zn = (Yn, Tn) a random
variable Sn so that the second model bases on random vectors Z̃n = (Yn, Tn, Sn). In
Section 6, we work out this idea.

Lemma 1 Let (Y1, T1, E1), ..., (YN , TN , EN) be i.i.d continuous distributed random vectors
such that there is a θ ∈ IRq with

Yn = θ0 + θ1Tn,1 + ...+ θq−1Tn,q−1 + En = x(Tn)
T θ + En,

where Tn = (Tn,1, ..., Tn,q−1) and x(Tn) = (1, Tn,1, ..., Tn,q−1).

Suppose that

• Pθ(Yn − x(Tn)
T θ > 0|Tn) =

1

2
• Pθ(Yn − x(Tn)

T θ = 0|Tn) = 0

• fTn(t) =
Γ( q

2
)

√
πq|Σ|

1

(1 + tTΣ−1t)
q
2

.

That is, Tn has a centered, multivariate Cauchy Distribution. Let Zn = (Yn, Tn). Then
the asymptotic distribution of the simplicial depth which is based on the dependent variable
Yn and the regressor Xn is equal to the distribution given in Theorem 1.

A similar idea is used to show that the random vector Tn does not need to be centered.
The next Theorem generalizes Lemma 1:

Theorem 2 Let (Y1, T1, E1), ..., (YN , TN , EN) be i.i.d continuous distributed random vec-
tors such that there is a θ ∈ IRq with

Yn = θ0 + θ1Tn,1 + ...+ θq−1Tn,q−1 + En = x(Tn)
T θ + En,
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where Tn = (Tn,1, ..., Tn,q−1) and x(Tn) = (1, Tn,1, ..., Tn,q−1).

Suppose that

• Pθ(Yn − x(Tn)
T θ > 0|Tn) =

1

2
• Pθ(Yn − x(Tn)

T θ = 0|Tn) = 0

• fTn(t) =
Γ( q

2
)

√
πq|Σ|

1

(1 + (t− µ)TΣ−1(t− µ))
q
2

.

That is, Tn has a multivariate Cauchy Distribution. Let Zn = (Yn, Tn). Then the asymp-
totic distribution of the simplicial depth which is based on the dependent variable Yn and
the regressor Xn is equal to the distribution given in Theorem 1.

The assumption of Cauchy distributed regressors is a technical requirement resulting
from the proofs. In a simulation study we checked how the simplicial depth test controls
the alpha level for different sample sizes and different distributional assumptions for the
explanatory variables. In the model

Yn = θ0 + θ1Tn,1 + θ2Tn,2 + En

we tested the null hypothesis

H0 : θ = 0 against H1 : θ 6= 0

to the asymptotic level α = 0.05. The observations are simulated under the null hypothesis
with Tn ∼ N2(0, I) or Tn ∼ Cauchy2(0, I) respectively, where I is the identity matrix.
The probabilities to reject the null hypothesis, estimated from 10000 samples with sample
size 50 or 100 respectively, are given in Table 2.

Table 2: The estimated probability to reject the null hypothesis

N Cauchy Normal
50 0.06 0.06

100 0.05 0.05

Thus, the test may also be applied to normal distributed explanatory variables. For a
power comparison with other existing tests in the case of simple linear regression (q = 2)
see Wellmann et al. (2008).
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5 Application: Test for multiple regression through

the origin

The North American Sunfish ”pumpkinseed” (Lepomis gibbosus) was introduced to Eu-
ropean waters about 100 years ago. Near Brighton, 162 specimens were collected in 2003
from the Tanyards fisheries pond. Nineteen landmarks (see Figure 1) were identified for
each fish.

Figure 1: Landmarks

In this section, we want to find out relationships between the landmarks. We restrict
ourselves on those relationships, that can be tested within the model for multiple regres-
sion through the origin (for other ones, see e.g. Tomeček et al. 2005 or Wellmann et al.
2007). We rotate, rescale and translate the fishes (the landmarks), such that landmark
10 (anterior tip of the upper jaw) is equal to (−1

2
, 0)T and landmark 11 (caudal fin base)

is equal to (1
2
, 0)T .

Let λpn = (λpn,1, λ
p
n,2)

T ∈ IR2 be the landmark number p of the n-th transformed fish.
We choose 3 landmarks near the origin and define the center of the fish as a convex com-
bination, for which the hypothesis, that it is centered cannot be rejected componentwise
with the sign-test. We take the center of a fish to be

xn = 0.34 λ18
n + 0.22 λ2

n + 0.44 λ5
n.

Figure 1 shows, that the horizontal position of the anterior edge of the dorsal fin base λ19
n,1

is nearly equal to the horizontal position of the anterior edge of the pelvic fin base λ1
n,1.

Indeed, the sign test for testing that

yn = λ19
n,1 − λ1

n,1
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is centered provides the very high p-value 0.937. We call yn the fin base difference in this
paper.

We test within the model for multiple regression through the origin (q = 2), how Yn
depends on the center Xn = (Xn,1, Xn,2)

T of the fish. Therefore we choose a random
sample that consists on 50 fishes. The original data are discrete, due to rounding errors.
To make them continuous, we add a small uniformly distributed random number to each
observation, such that we would obtain the original data by rounding.
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Figure 2: A deepest plane with θ2 = 0 and
least squares fits at the xn,1-axis
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Figure 3: A deepest plane with θ1 = 0 and
the least square fit at the xn,2-axis

The parameter with maximum simplicial depth is θ̂D := (−0.5411,−0.8660)T and the

least squares fit is θ̂l2 = (0.9152,−1.1676)T . At first we test the hypothesis, that Xn,1 has
no influence on Yn, that is, H0 : θ1 = 0. The test statistic depends on the depth of the
deepest plane with θ1 = 0, given by the parameter (0,−0.6952)T (see Figure 3). The test
statistic is 0.122, which is more than the 40% quantile of the asymptotic distribution and
thus, we have no rejection (see Table 1). Hence, we may assume that Yn does not depend
on the horizontal position of the center. Contrary to this result, the classical F-test rejects
this hypothesis with respect to a significance level 5% (p-value = 0.028). This is due to
the outlier in the left lower corner of Figure 2. The outlier strongly influences the first
component of the least squares fit θ̂l2 , who’s first component is positive (see the dashed
line in Figure 2).

Without the outlier, the least squares fit is θ̃l2 := (−0.4958,−0.9630)T so that its first
component is negative. Then the classical F-test would not reject the null-hypothesis with
respect to a significance level 5%. Note that the least squares fit for the data without the
outlier is close to the parameter θ̂D with maximum simplicial depth.

On the other hand, the hypothesis that Xn,2 has no influence on Yn, that is, H0 : θ2 = 0
has to be rejected with respect to a significance level 2%, since the test statistic −2.184 is
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near the 1% quantile of the asymptotic distribution. In particular, the deepest plane with
θ2 = 0 given by the parameter (−1.2, 0)T gives not a good description of the data (see
Figure 2). The classical F-test also rejects the null-hypothesis and provides a p-value of
0.0001. Indeed, the least square fit is strongly decreasing at the xn,2-axis (see the dashed
line in Figure 3).

We conclude that Yn depends on Xn,2, but not on Xn,1. As shown in Figure 3, the
fin base difference becomes smaller if the center of the fish is shifted upwards. Roughly
speaking, λ19

n shifts to the left and/or λ1
n shifts to the right, if the center is shifted upwards.

This is possibly due to a curved vertebral column. If this interpretation is correct, then one
could take into consideration a nonlinear transformation of the landmarks before further
investigations, such that the vertebral columns of the transformed fishes can expected to
be a straight line.

6 Proofs

See also Wellmann (2007) for details of the proofs.

Proof of Proposition 2

Let x1, x2 ∈ IRq\{0}.
For j = 3, ..., q + 1 let Wj := 1

||AXj ||AXj, U := W3×...×Wq+1

||W3×...×Wq+1||
and for j = 1, 2 let

K+(xj) := {w ∈ IRq : (Axj)
Tw ≥ 0},

K−(xj) := {w ∈ IRq : (Axj)
Tw ≤ 0}.

Then we have

K(x1, x2) +
1

2
= P (xT1 (X3 × ...×Xq+1) x

T
2 (X3 × ...×Xq+1) < 0)

= P (det(x1, X3, ..., Xq+1) det(x2, X3, ..., Xq+1) < 0)

= P (det(A(x1, X3, ..., Xq+1)) det(A(x2, X3, ..., Xq+1)) < 0)

= P (det(Ax1, AX3, ..., AXq+1) det(Ax2, AX3, ..., AXq+1) < 0)

= P (det(Ax1,W3, ...,Wq+1) det(Ax2,W3, ...,Wq+1) < 0)

= P ((Ax1)
TU (Ax2)

TU < 0)

= P (U ∈ K+(x1) ∩K−(x2)) + P (U ∈ K−(x1) ∩K+(x2))

= P (U ∈ K+(x1) ∩K−(x2)) + P (−U ∈ K+(x1) ∩K−(x2)).

Because of −U ∼ U , it follows that

K(x1, x2) = 2 P (U ∈ K+(x1) ∩K−(x2)) −
1

2
.
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Since W3, ...,Wq+1 are uniformly distributed on the unit sphere, this is the case also for
U . The proportion of the unit sphere, that is contained in K+(x1) ∩K−(x2) is equal to
the angle between Ax1 and Ax2, divided by 2π.
Hence,

K(x1, x2) = 2
∢(Ax1, Ax2)

2π
− 1

2

=
1

π
arccos

(
<

Ax1

||Ax1||
,
Ax2

||Ax2||
>

)
− 1

2
. 2

Proof of Proposition 3

Since the the required Gegenbauer functions have different definitions for q = 2 and q ≥ 3,
both cases have to be handled separately. At first, we investigate the case q ≥ 3.
For brevity let us write λ := n

2
. For all s, t ∈ S we have

K(s, t) =
1

π
arccos(< s, t >) − 1

2

=
1

π
arccos(cos(∢(s, t))) − 1

2
= k(cos(∢(s, t))),

where k(σ) := 1
π

arccos(σ) − 1
2
∈ IL2[−1, 1].

Since the kernel function only depends on cos(∢(s, t)), it follows by Fenyö and Stolle

(1983, p.273), that {S(n)
p,l } is the complete system of eigenfunctions of TK with eigenvalues

λp =
4 π

n
2
+1

(2p+ n)Γ
(
n
2

)bpcp, for p ∈ IN0, where

bp :=
2n−1p!

(
n
2

+ p
)
Γ
(
n
2

)2

π Γ(n+ p)
,

cp :=

∫ 1

−1

k(σ)Cλ
p (σ)

(
1 − σ2

) (n−1)
2 d σ.

We denote by Cλ
p the n + 2-dimensional Gegenbauer function. Useful properties of this

function are derived in Tricomi (1955).
Since λ > 0 we have

Cλ
p (x) =

∏p−1
j=0(2λ+ j)

∏p−1
j=0(λ+ 1

2
+ j)

P

(
λ− 1

2
,λ− 1

2

)
p (x),

where

P (α,β)
p (x) =

1

2p

p∑

k=0

k−1Q
m=0

(p+α−k+1+m)·
p−k−1Q
m=0

(β+k+1+m)

k!(p− k)!
(x− 1)p−k(x+ 1)k

14



is a Jacobi polynomial. For instance, see Tricomi (1955, p.161 and p.178).
By the doubling formula of the Gamma function Γ(2z) = 22z−1√

π
Γ(z)Γ(z + 1

2
) we obtain:

λp = πλp
Γ(λ)Γ

(
p

2

)
Γ
(
p

2
+ 1

2

)

Γ
(
λ+ p

2

)
Γ
(
λ+ p

2
+ 1

2

) cp.

Because of Cλ
0 ≡ 1 and arcsin(−x) = − arcsin(x) we obtain

c0 =

∫ 1

−1

1

π

(
arccos(x) − π

2

)(
1 − x2

)λ− 1
2d x

= −
∫ 1

−1

1

π
arcsin(x)

(
1 − x2

)λ− 1
2d x

= −
∫ 0

−1

1

π
arcsin(x)

(
1 − x2

)λ− 1
2d x−

∫ 1

0

1

π
arcsin(x)

(
1 − x2

)λ− 1
2d x

= −
∫ 1

0

1

π
arcsin(−x)

(
1 − x2

)λ− 1
2d x−

∫ 1

0

1

π
arcsin(x)

(
1 − x2

)λ− 1
2d x

= 0.

Hence, λ0 = 0. It is well known (see for example
http://functions.wolfram.com/Polynomials/GegenbauerC3/21/01/02/02/), that the func-
tion

F (x) := − 2 λ

p (p+ 2 λ)
Cλ+1
p−1 (x)

(
1 − x2

) 1
2
+λ

has the derivative
F ′(x) = Cλ

p (x)
(
1 − x2

)λ− 1
2 .

This is needed to simplify cp for p > 0.

Let p > 0. Since arccos′(x) = −
(
1 − x2

)− 1
2 we obtain by integration by parts:

cp =

∫ 1

−1

( 1

π
arccos(x) − 1

2

)
Cλ
p (x)

(
1 − x2

)λ− 1
2d x

=
1

π

∫ 1

−1

arccos(x)Cλ
p (x)

(
1 − x2

)λ− 1
2d x− 1

2

∫ 1

−1

Cλ
p (x)Cλ

0 (x)
(
1 − x2

)λ− 1
2d x

T., p.179
=

1

π

∫ 1

−1

arccos(x)Cλ
p (x)

(
1 − x2

)λ− 1
2d x− 0

=
1

π

(
[F (x) arccos(x)]1−1 −

∫ 1

−1

arccos′(x)F (x)d x
)

=
1

π

(
0 − 0 +

∫ 1

−1

(
1 − x2

)− 1
2F (x)d x

)

= − 1

π

∫ 1

−1

(
1 − x2

)− 1
2

2 λ

p (p+ 2 λ)
Cλ+1
p−1 (x)

(
1 − x2

) 1
2
+λ
d x

= − 2 λ

π p (p+ 2 λ)

∫ 1

−1

Cλ+1
p−1 (x)

(
1 − x2

)λ
d x.

15



The calculation of this integral is somewhat tedious, so we give only the result:

∫ 1

−1

Cλ+1
p−1 (x)

(
1 − x2

)λ
d x =

Γ
(
p

2
+ λ+ 1

2

)

Γ
(
p

2
+ λ+ 1

) Γ
(
p

2

)

Γ
(
p

2
+ 1

2

) sin
(p
2
π
)2
.

An other (rather ugly) expression for this integral can easily be obtained by the explicit
representation of Cλ+1

p−1 . Note, that λ+ 1 = q

2
. Putting together all steps, we obtain:

λp = πλp
Γ(λ)Γ

(
p

2

)
Γ
(
p

2
+ 1

2

)

Γ
(
λ+ p

2

)
Γ
(
λ+ p

2
+ 1

2

)cp

= −πλp Γ(λ)Γ
(
p

2

)
Γ
(
p

2
+ 1

2

)

Γ
(
λ+ p

2

)
Γ
(
λ+ p

2
+ 1

2

) λ

π p
(
λ+ p

2

)
∫ 1

−1

Cλ+1
p−1 (x)

(
1 − x2

)λ
d x

= −πλ−1 Γ(λ+ 1)Γ
(
p

2

)
Γ
(
p

2
+ 1

2

)

Γ
(
λ+ p

2
+ 1
)
Γ
(
λ+ p

2
+ 1

2

) Γ
(
p

2
+ λ+ 1

2

)

Γ
(
p

2
+ λ+ 1

) Γ
(
p

2

)

Γ
(
p

2
+ 1

2

) sin
(p
2
π
)2

=
−πλ+1

Γ(λ+ 1)

Γ(λ+ 1)2Γ
(
p

2

)2

Γ
(
λ+ p

2
+ 1
)2

sin
(
p

2
π
)2

π2

= −1

2
2
π

q
2

Γ
(
q

2

) Γ
(
q

2

)2
Γ
(
p

2

)2

Γ
(
q

2
+ p

2

)2
sin
(
p

2
π
)2

π2

= −1

2
τq

(
Γ
(
q

2

)
Γ
(
p

2

)

Γ
(
q

2
+ p

2

) sin
(
p

2
π
)

π

)2

.

Now let q = 2. The eigenvalues for q = 2 can be obtained by calculating the formula

λp =

∫ 2π

0

( 1

π
arccos(cos(σ)) − 1

2

)
cos(p σ) d σ,

given in Fenyö and Stolle (1983). It’s not difficult to show, that λ0 = 0 and for p ∈ IN we
have

λp =

∫ π

0

(σ
π
− 1

2

)
cos(p σ) d σ +

∫ 2π

π

(2π − σ

π
− 1

2

)
cos(p σ) d σ

= −1

2
2π

2(1 − cos(pπ))

p2π2

= −1

2
2π

(
2

p

sin(p
2
π)

π

)2

.

In order to validate the last equation, note that sin(p
2
π)2 is just an indicator function.

Hence, the proposition holds also for q = 2. 2

Proof of Lemma 1

We compare the simplicial depth in the statistical model for Z1, ..., ZN with a simplicial
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depth for i.i.d. random variables Z̃1, ..., Z̃N , where Z̃n is obtained from Zn by appending
an independent standard normal distributed random variable Sn. That is, Z̃n = (Zn, Sn)

and P̃ Z̃n

θ := PZn

θ ⊗ PN (0,1) is the distribution of Z̃n. Take f̃θ to be a density of P̃ Z̃n

θ .

Simplicial depth d̃S and tangent depth d̃T of θ with respect to the observations z̃n =
(yn, tn, sn) are based on the dependent variable h̃(z̃n) = snyn and the regressor ṽ(z̃n) =
snx(tn). Note, that the sign of the residual of observation z̃n = (zn, sn) is given by

˜sigθ(z̃n) = sign(snyn − snx(tn)
T θ)

= sign(sn) sigθ(zn).

Since

d̃T (θ, z̃) = min
u 6=0

#{sign(sn) sigθ(zn)snu
Tx(tn) > 0}

= min
u 6=0

#{sigθ(zn)uTx(tn) > 0}

= dT (θ, z),

tangent depths are equal in both models for s1, ..., sN 6= 0. This holds also for the
harmonized depths and thus, also the simplicial depths coincide, that is, for all θ ∈ Θ and
all z̃n = (zn, sn) ∈ Z × IR with sn 6= 0 for n = 1, ..., N , we have

dS(θ, z) = d̃S(θ, z̃).

Thus,

⊗N
n=1P̃

Z̃n

θ ({z̃ : d̃S(θ, z̃) < λ}) = (⊗N
n=1P

Zn

θ ) ⊗ (⊗N
n=1PN (0,1))({z : dS(θ, z) < λ} × IRN)

= ⊗N
n=1P

Zn

θ ({z : dS(θ, z) < λ})
for all λ > 0, so that also the distributions of the simplicial depths are equal in both
models.

It remains to show that Z̃1, ..., Z̃N satisfy the assumptions of Theorem 1. Since the
random variables are continuous distributed, conditional densities can be used to check
that ˜sigθ(Z̃n) is positive (negative) with probability 1

2
, given ṽ(Z̃n) = Snx(Tn).

The main part is to show that K(Z̃1) := 1
||Aṽ(Z̃1)||Aṽ(Z̃1) with A =

(
1 0

0 Σ− 1
2

)
is

uniformly distributed on the unit sphere S. The random variable U(y1, t1, s1) := Σ− 1
2 t1

is multivariate Cauchy-distributed with density

f̃Uθ (u) =
Γ( q

2
)√

πq
1

(1 + uTu)
q
2

and for Z̃1 = (Y1, T1, S1) we can write

K(Z̃1) = sign(S1)
1√

1 + U(Z̃1)TU(Z̃1)

(
1

U(Z̃1)

)
.
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It suffices to show that
µ(V )

µ(S)
=

∫

V

1 d(P̃ Z̃1
θ )K

for each event V ⊂ S ∩ IR>0 × IRq−1 and each event V ⊂ S ∩ IR<0 × IRq−1 which is open
in S, where µ is the uniform measure on S with µ(S) = τq.

Consider the case V ⊂ S ∩ IR>0 × IRq−1. Letting

U(V ) := {u ∈ IRq−1 :
1√

1 + uTu
(1, u1, ..., uq−1)

T ∈ V },

the function

ψ : U(V ) → V, ψ(u) :=
1√

1 + uTu
((−1)i+1, u1, ..., uq−1)

T

is a local parametrization of V . Hence,

µ(V ) =

∫

U(V )

√
gψ(u)dλq−1,

where the gram determinant gψ(u) is defined as

gψ(u) = det





∑q

j=1
∂ψj

∂u1
(u)

∂ψj

∂u1
(u) ...

∑q

j=1
∂ψj

∂u1
(u)

∂ψj

∂uq−1
(u)

: :∑q

j=1
∂ψj

∂uq−1
(u)

∂ψj

∂u1
(u) ...

∑q

j=1
∂ψj

∂uq−1
(u)

∂ψj

∂uq−1
(u)



 .

It is tedious to check that

gψ(u) =
1

(1 + uTu)2(q−1)
det((1 + uTu)I − uuT ),

where I = (e1, ..., eq−1) is the identity matrix. With a1,j := (1 + uTu)ej, and a2,j := −uju
for j = 1, ..., q − 1 we have

det((1 + uTu)I − uuT ) = det(a1,1 + a2,1, ..., a1,q−1 + a2,q−1).

Since the determinant is linear in each column and since the determinant of a matrix is
0, if two columns are linearly dependent, we obtain

det((1 + uTu)I − uuT ) = (1 + uTu)q−2

(see www.owlnet.rice.edu/∼fjones/chap3.pdf, Problem 3-41).

It follows that gψ(u) = 1
(1+uTu)q and thus,

µ(V ) =

∫

U(V )

√
1

(1 + uTu)q
dλq−1 for V ⊂ S ∩ IR>0 × IRq−1. (1)
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Now let V ⊂ S ∩ IR>0 × IRq−1 or V ⊂ S ∩ IR<0 × IRq−1 be open in S. Let i = 1 or

i = 2, such that (−1)iV ⊂ S ∩ IR>0 × IRq−1. For brevity we write P̃θ := P̃ Z̃1
θ .

With T̄ (yn, tn, sn) := tn and S̄(yn, tn, sn) := sn, we have
∫

V

1 dP̃K
θ = P̃θ(K ∈ V )

= P̃θ(K ∈ V |S̄ > 0)P̃θ(S̄ > 0) + P̃θ(K ∈ V |S̄ < 0)P̃θ(S̄ < 0)

= P̃θ(
Ax(T̄ )

||Ax(T̄ )|| ∈ V )
1

2
+ P̃θ(−

Ax(T̄ )

||Ax(T̄ )|| ∈ V )
1

2

=
1

2
P̃θ(

Ax(T̄ )

||Ax(T̄ )|| ∈ (−1)iV )

=
1

2
P̃θ(ψ

−1

(
1√

1 + UTU

(
1
U

))
∈ ψ−1((−1)iV ))

=
1

2
P̃θ(U ∈ ψ−1((−1)iV ))

=
1

2

∫

ψ−1((−1)iV )

f̃Uθ (u) dλq−1

=
Γ( q

2
)

2
√
πq

∫

ψ−1((−1)iV )

1

(1 + uTu)
q
2

dλq−1

(1)
=

µ((−1)iV )

µ(S)
=
µ(V )

µ(S)

It follows that the assumptions of Theorem 1 hold, so that d̃S has the asymptotic
distribution, mentioned there. Since the distributions of the simplicial depths are equal,
it follows that also dS has that asymptotic distribution. 2

Proof of Theorem 2

We compare the simplicial depth in the statistical model for Z1, ..., ZN ∼ Pθ with a
simplicial depth of i.i.d. random variables Z̃1, ..., Z̃N , where Z̃n := (Ỹn, T̃n) := (Yn, Tn−µ)
is obtained from Zn by shifting Tn. Let ϕ(θ) := (θ0 + θ1µ1 + ... + θq−1µq−1, θ1, ..., θq−1).
The position of the true regression function gθ relative to realizations z1, ..., zN is equal to
the position of gθ(t− µ) = gϕ−1(θ)(t) relative to the shifted observations z̃n = (yn, tn− µ),

so it is convenient to assume that Z̃n ∼ (Pϕ−1(θ))
bZ , where Ẑ(yn, tn) = (yn, tn − µ). That

is, the distribution of Z̃n is defined by P̃θ := P
bZ
ϕ−1(θ) for θ ∈ Θ.

Simplicial depth d̃S and tangent depth d̃T of θ with respect to the observations z̃n =
(ỹn, t̃n) are based on the dependent variable ỹn and the regressor x(t̃n). We have to show
that the distributions of the simplicial depths are equal in both models and that the
second model satisfies the assumptions of the previous theorem.
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The sign of the residual of observation z̃n = (yn, tn − µ) = zn − (0, µ) with respect to
parameter ϕ(θ) is given by

˜sigϕ(θ)(z̃n) = sign(yn − x(tn − µ)Tϕ(θ))

= sign(yn − x(tn)
T θ)

= sigθ(zn).

Since the function F : IR[X] → IR[X] with p(X) 7→ p(X + µ) is bijective, it follows that

d̃T (ϕ(θ), z̃) = min
u 6=0

#{n : sigϕ(θ)(z̃n)u
Tx(tn − µ) > 0}

= min
u 6=0

#{n : sigθ(zn)F (u)Tx(tn − µ) > 0}

= min
u 6=0

#{n : sigθ(zn)u
Tx(tn) > 0}

= dT (θ, z).

This holds also for the harmonized depths and thus, for all θ ∈ Θ and all z1, ..., zN ∈ Z
we have

d̃S(ϕ(θ), Z̄(z)) = dS(θ, z),

where Z̄(z) := ((y1, t1 − µ), ..., (yN , tN − µ)). Since for all λ > 0 we have

⊗N
n=1P̃ϕ(θ)({z̃ : d̃S(ϕ(θ), z̃) < λ}) = ⊗N

n=1P
bZ
θ ({z̃ : d̃S(ϕ(θ), z̃) < λ})

= (⊗N
n=1Pθ)

Z̄({z̃ : d̃S(ϕ(θ), z̃) < λ})
= ⊗N

n=1Pθ({z : d̃S(ϕ(θ), Z̄(z)) < λ})
= ⊗N

n=1Pθ({z : dS(θ, z) < λ}),

it follows that (⊗N
n=1Pθ)

dS(θ,·) = (⊗N
n=1P̃ϕ(θ))

d̃S(ϕ(θ),·) for all θ ∈ Θ.

It remains to show that Z̃1, ..., Z̃N satisfy the assumptions of the previous theorem.

At first we show, that for s ∈ {−1, 1} and for all θ ∈ Θ the conditional probability that
˜sigθ(Z̃n) is positive (negative), given v(Z̃n) := x(T̃n) is equal to 1

2
. For all v′ ∈ Image(v)

we can write v′ = x(t′ − µ) with a t′ ∈ IRq−1. It follows that

P̃θ({z̃n : ˜sigθ(z̃n) = s}|v = v′) = P
bZ
ϕ−1(θ)({z̃n : ˜sigθ(z̃n) = s}|v = v′)

= Pϕ−1(θ)({zn : ˜sigθ(Ẑ(zn)) = s}|v ◦ Ẑ = x(t′ − µ))

= Pϕ−1(θ)({zn : sigϕ−1(θ)(zn) = s}|v = x(t′))

=
1

2
.

To show that T̃n has a centered, multivariate Cauchy distribution, we have to calculate
it’s density f̃ T̄θ , where f̃θ is the density of P̃θ and T̄ (ỹn, t̃n) := t̃n. Take fθ to be the density
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of Pθ. Then,

f̃ T̄θ (tn) =

∫
f̃θ(yn, tn)dyn

=

∫
f

bZ
ϕ−1(θ)(yn, tn)dyn

=

∫
fϕ−1(θ)(yn, tn + µ)dyn

= fTn(tn + µ)

=
Γ( q

2
)

√
πq|Σ|

1

(1 + tTΣ−1t)
q
2

Hence, the assumptions of Lemma 1 hold, so that d̃S has the asymptotic distribution,
mentioned there. Furthermore, it follows that also dS has this asymptotic distribution. 2
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