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Abstract

A general approach for developing distribution free tests for general linear models
based on simplicial depth is applied to multiple regression. The tests are based
on the asymptotic distribution of the simplicial regression depth, which depends
only on the distribution law of the vector product of regressor variables. Based
on this formula, the spectral decomposition and thus the asymptotic distribution
is derived for multiple regression through the origin and multiple regression with
Cauchy distributed explanatory variables. A simulation study suggests that the
tests can be applied also to normal distributed explanatory variables. An application
on multiple regression for shape analysis of fishes demonstrates the applicability of
the new tests and in particular their outlier robustness.
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1 Introduction

Liu (1988, 1990) used the half space depth of Tukey (1975) to define simplicial depth of
a multivariate location parameter § € © = IR? in a sample z1, ..., 2y € IR? as

dS(Q,(zl,...,zN)):( N > > T{d(0, (Znys s Zny1r)) > O}, (1)

+1
q 1<ni<na<...<ngt1<N
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where d is the half space depth of Tukey and I denotes the indicator funtion. This depth
counts the simplices spanned by ¢ 4+ 1 data points which are containing the parameter 6.
Since Tukey (1975), several other depth notions were introduced. Each of them can be
used as depth d in (1) leading to several different simplicial depth notions. Several depth
notions can be obtained from the book of Mosler (2002) and the references in it. If d is the
regression depth of Rousseeuw and Hubert (1999), then dg is called simplicial regression
depth. General concepts of depth were introduced and discussed by Zuo and Serfling
(2000a,b) and Mizera (2002). Mizera (2002) in particular generalized the regression depth
of Rousseuw and Hubert (1999) by basing it on quality functions instead of squared
residuals. This approach makes it possible to define the depth of a parameter value with
respect to given observations in various statistical models via general quality functions.
Appropriate quality functions are in particular likelihood functions as studied by Mizera
and Miiller (2004) for the location - scale model and by Miiller (2005) for generalized
linear models.

Any concept of data depth can be used to generalize the notion of ranks and to derive
distribution free tests by generalizing Wilcoxon’s rank sum test. Nevertheless only few
papers deal with tests based on data depth. Liu (1992) and Liu and Singh (1993) proposed
distribution-free multivariate rank tests based on depth notions. While the asymptotic
normality is derived for several depth notions for distributions on IR, it is shown only
for the Mahalanobis depth for distributions on IR, k > 1. Hence it is unclear how to
generalize the approach of Liu and Singh to other situations. More successful distribution
free tests are provided by the concept of ranks and signs based on the multivariate Oja
median (see Oja 1983). For an overview of this methods see Oja (1999). However this
approach provides only tests for multivariate data and does not concern regression models.
Bai and He (1999) derived the asymptotic distribution of the maximum regression depth
estimator. However, this asymptotic distribution is given implicitly so that it is not
convenient for testing. Tests for regression based on depth notions were only derived by
Van Aelst et al. (2002), Miiller (2005) and Wellmann et al. (2008). Van Aelst et al.
(2002) even derived an exact test based on the regression depth of Rousseeuw and Hubert
(1999) but did it only for linear regression.

Miiller (2005) and Wellmann et al. (2008) used the fact that any simplicial depth is a
U-statistic with kernel function

Yo(ors oo 2y n) = T{d(0, 2y, s 2, 1)) > O},

For U-statistics the asymptotic distribution is known. However, the U-statistic is de-
generated for most simplicial depth notions so that the spectral decomposition of the
conditional expectation

Vy(21, 22) 1= Eg(Wo( 21, . .., Zq1)| 71 = 21, Za = 22) — Ep(Vo(Zh, ..., Zgs1)) (2)

is needed to derive the asymptotic distribution. But as soon as the spectral decomposition
of (2) is known, asymptotic tests can be derived for any hypothesis of the form Hy : 6 € O,
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where O is an arbitrary subset of the parameter space ©. These tests are based on the
test statistic T'(z1,. .., 2n) := suppeg, To(21, - .., 2n), where Ty(z1, ..., zx) is defined as

T@(Zlv"'azN) ::N(ds(€7 (le"azN))_MQ) (3)
with pg = Eg(¢Ye(Zy, ..., Zs+1)) (see Miiller 2005 and Wellmann et al. 2008).

The spectral decomposition of (2) was derived by Miiller (2005) for linear and quadratic
regression by solving differential equations. Wellmann et al. (2008) extended this result to
polynomial regression with polynomials of arbitrary degree by proving a general formula of
(2) and then specifying the general formula for polynomial regression so that the spectral
decomposition can be found by Fourier series representation.

The general formula can be specified also for multiple regression so that a spectral
decomposition of (2) can be derived for this case as well. This is shown in this paper.

In Section 2, the general approach with this general formula is presented. In particular
the assumptions for this general approach are given in this section. In Section 3 the general
formula is specified for multiple regression through the origin. Based on the specified
formula the spectral decomposition is derived, which is given by spherical functions and
eigenvalues depending on Gegenbauer functions.

The asymptotic distribution for multiple regression with intercept, where the regressors
have Cauchy distribution, is given in Section 4. This model is traced back to multiple
regression through the origin by multiplying the regressors and the dependent variables
with additional random variables S,,. The simulation study, which is presented at the end
of Section 4 suggests, that the tests can be applied also to normal distributed explanatory
variables.

Section 5 provides some applications on tests in multiple regression through the origin
with two explanatory variables in the shape analysis of fishes. These examples in par-
ticular show that the new tests possess high outlier robustness. All proofs are given in
Section 6.

2 The general case

We assume a statistical model for i.i.d. random variables Z1, ..., Zy with values in Z C
IR? p > 1 and parameter space © = IR?. We choose functions h : Z — IRand v : Z — IRY
and call

Y, = h(Z,) the dependent variable,
X, =v(Zy) the regressor, and
Sn(0) =sign(Y, — X10), 0 € IR, the sign of the residual.
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We assume that for all § € ©:
1
¢ RSO - 1% = bas. g
o  P(51(0) =0|X,) =0as., and
o  Py(Xy,..., X, arelinearly dependent) = 0.

The last two conditions of (4) are easily satisfied for example by continuous distri-
butions. Depending on the distribution of Z,, the first condition can be satisfied by
appropriate transformations v and h. The first condition in particular implies that the
true regression function is in the center of the data, which means that the median of the
residuals is zero.

We denote random variables by capital letters and realizations by small letters. The
depth of 6 € © for observations z = (z1, ..., zy) is given by

dr(0,z) = 151;51 #{n : 5,(0) u"v(z,) > 0}.

This depth coincides with the regression depth of Rousseeuw and Hubert (1999) and
with Definition 2 from Wellmann et al. (2008), if the quality functions G., (0) = —(h(z,)—
v(2,)70)? are used. It is a tangent depth in the sense of Mizera (2002).

This tangent depth has the disadvantage, that it provides a simplicial depth which
attains rather high values in subspaces of the parameter space. This is in particular a
disadvantage in testing if the aim is to reject the null hypothesis. To avoid this disad-
vantage, we introduce a modified version of the depth dr, called harmonized depth. The
harmonized depth of § € © with respect to observations 2y, ..., 2,41 is defined as

{ dr(0, (z1, ..., 2¢+1)), ifs,(0) #0forn=1,..,¢+1

Yo(z1, -, 2g11) = 0, otherwise,

so that the simplicial depth is given by

ds(Q,z):( N >_1 > Do (Znys oo Zngar)-

+1
q 1<ni<ne<...<ng41<N

Under the assumptions (4) we have

1
po = Eo(o(Z1; ..., Zg1)| 21 = 21) = 7

(see Wellmann et al. (2008)), so that dg(0,z) is a degenerated U-statistic. Hence the
spectral decomposition of (2) is needed. This can be derived by the following Proposition
1 of Wellmann et al. (2008).



Proposition 1 Under the assumptions (4), the conditional expectation (2) satisfies

s1(0)sa(0)

241

1

Vi1, 22) = (Pg(:n?W eIW < 0) — —> ,

2
where W := X3 x ... X Xg41 15 the vector product of Xs, ..., Xy41.
Recall that the vector product w = 3 X - -+ X 441 of 3, ...,2441 € IR? is the gradient

of the linear function z — det(xs, ..., 441, ). For instance see Storch and Wiebe (1990,
p 362 ff.). The vector w is orhogonal to x3, ..., Zs11.

Because of this representation, only the spectral decomposition of the kernel K, defined
by

1
K(z1, ) := Pp(xl W 2ZW < 0) — o1 for x1, 29 € IRY (5)
is needed. As soon as the spectral decomposition is given by
lC(l’l,:CQ) = Z)\j@j(l’l)g@j(l’g) in EQ(PXl X PXI), (6)
j=1

where (¢;)52, is an orthonormal system (ONS) in Ly (P*') and Ay, Ay, ... € IR, then the
asymptotic distribution of the simplicial depth satisfies

I, £ ~= (¢g+1) )
N(ds(0,(Z1,...,ZN)) — — ——— N (U —1 7
(S(?( 1, ) N)) 2q)—>21:(q_1)'2ql(l )7 ()
where Uy, Us, ... are i.i.d. random variables with U; ~ AN(0,1) (see e.g. Lee 1990, p.
79, 80, 90, Witting and Miiller-Funk, p. 650). If the distribution of the vector product
W = X3 x ... x X441 does not depend on 6, which is the case for usual regressors, then

the asymptotic distribution is independent of 6.

Then any hypothesis of the form Hy : 6 € ©j, where O is an arbitrary subset
of the parameter space O, can be tested by using the test statistic T'(z1,...,2y) =

SUPgeo, 16(21,- ., 2n), where Ty(z1,...,2zx) is defined by (3) with py = 2% The null

hypothesis Hy is rejected if T'(z1,...,2y) is less than the a-quantile of the asymptotic
distribution of Ty(Z1, ..., Zy).

3 Multiple regression through the origin

Assuming a model for multiple regression through the origin,

Yo=0Xp1+ .. +0,X0g+E,= X0+ E,
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we suppose that (4) holds and that there is an invertible matrix A € IR%Y, such that

;'A X, is uniformly distributed on the unit sphere. This is in particular the case, if

(JA Xn|

X, has a elliptical distribution like the multivariate normal distribution with mean zero.
In order to derive the asymptotic distribution of the simplicial depth for this regression
model, we have to simplify the kernel function K given by equation (5). By using that
with mzél X, ..., mA X,+1 also the vector product is uniformly distributed on
the unit sphere, we obtain the following proposition.

Proposition 2 For all 1, x5 € IRY\{0} we have

K(x1,72) = %arccos ( Ay Az, ) —

< >
[ Az [ || Azl

N | =

The value K(z1,x2) depends only on the angle between Az; and Axs. In Feny6 and
Stolle (1983) it is shown, that we thus obtain the required eigenvalues, if we calculate

some integrals, in which so called Gegenbauer functions occur. Therefor, let Ty defined
by

Tk : Lo(P*Y) — Lo(P*) with Ticf(s) = //C(S,t)f(t) dP¥ (1)
be the integral operator based on IC(z1,z5). We obtain the following result:

Proposition 3 Let S C IR? be the unit sphere, where ¢ > 2.
Let K € C(S x S) be the function K (s,t) := Larccos(< s,t >) — % for all s,t € S.
The values

)\0 = 0

L

2
4 i b
5) Sln(?ﬂ)) forp € IN
5 ﬂ-

q
are the eigenvalues of the integral operator Ty, where T, = 2% 18 the ¢ — 1-dimensional

2
volume of the sphere. For p € IN, the corresponding eigenfunctions with respect to the

uniform measure v on S with v(S) = 7, are the orthogonalized and normalized spherical

functions Sgl), e ,Sz(ﬂzp of degree p, where n := q — 2. By Fenyd and Stolle (1983) we

have u, = %(2}9 +n).
Let (S (q_Q)) be the family of orthogonalized and normalized spherical functions
k) J(pk)er

from Proposition 3 with I := {(p,k) € IN* : k < w,} and for j € I let p;(x) :=
(¢—2)
VT4 S5 (||Alx|\A‘T)'




Because of AXy~ % v, we obtain for all 7,5 € I:

IIAX I

_ 1
/¢i¢deX1 - /\/_Sq 2) ||A ||A )\/T_QSJ('q 2)(’|Ax|’Ax) P (dx)

_ 1
— Sl X, | sl 2)< AX)dP
/ (HAXlll ) o\JlAx

= / )Sj(q 2 praxAX

_ /Sq2 q2

Hence, ((pj)j cr 18 an ONS in I, (PXl). From the previous propositions we conclude, that
in IL,(P* @ P*1) we have:

1 Az, Amx ) 1
K(zy1,29) = — arccos| < ’ )2
(1 2) ™ < HAxIH ||Al’2H 5
1
- 3 g )
(kaEI Az Azl
1
= S ( Am) I ( )
(pkzel q\/_ e\ A VTS ||A:C2H
)\p
- Z T_¢(p,k)(xl)90(p,k)($2).
(pkyer 9

Hence with (7), we immediately get the next theorem:

Theorem 1 Suppose, that there is an invertible matriz A € IRT? with ¢ > 2, such that
}1,4)( IIA X, is uniformly distributed on the unit sphere and suppose that assumption (4)
olds. Let A1, As, ... and uq,us, ... be as in the previous proposition.

Then there are i.i.d. random variables Uy, Us, ... with Uy, ~ Xip such that

1

N(ds(0. (Zi..- . Zn) = 57) == (C(]qf—l%qi—: (U, — ).

A simple possibility for estimating the quantiles is the generation of random numbers
of the distribution. The quantiles given in Table 1 were calculated by computing 10000
random numbers of the distribution (only the first 150 summands). The calculation of
the quantiles was repeated 500 times. The means of these quantiles are given in the
table. The 99.5% confidence band is £0.01 at most for each estimated quantile. The test
statistic for multiple regression can be calculated similarly as for polynomial regression
described in Wellmann et al. (2007). But here the calculation of the simplicial depth of a
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given parameter is based on Lemma 1 in Wellmann et al. (2008) by checking if s, (0)z,,
is a linear combination of sy, (0)Zn,, ..., Sn,,, (0)Tn,,, With negative coefficients.

Table 1: Means of the simulated quantiles for multiple regression

a-quantile | =2 ¢g=3 q¢q=4
0.5% | -2.607 -1.845 -1.222
1.0% | -2.189 -1.566 -1.044
2.0% | -1.771 -1.284 -0.863
2.5% | -1.635 -1.192 -0.805
5.0% | -1.216 -0.905 -0.619
10.0% | -0.795 -0.612 -0.426
20.0% | -0.368 -0.310 -0.224
30.0% | -0.127 -0.126 -0.099
40.0% | 0.048 0.008 -0.006
50.0% | 0.183 0.116 0.072
60.0% | 0.293 0.209 0.140
70.0% | 0.388 0.292 0.203
80.0% | 0.473 0.373 0.265
90.0% | 0.554 0.456 0.331
95.0% | 0.600 0.504 0.373




4 Multiple regression with intercept

We derive the asymptotic distribution of the simplicial depth for different models of
multiple regression with intercept as follows:

We define two different statistical models with different simplicial depths. We want to
calculate the asymptotic distribution of the simplicial depth dg for a statistical model
(ZN A P) with P = {®)_,P) : § € ©}. We consider an other statistical model
(ZV, A, P) with P = {®_ Py : § € O} and in this model, we define the simplicial
depth dg. Assume that there is a transformation ¢ : © — © of the parameters, such
that (@N_, P)%@) = (@), P,))%#@). If the asymptotic distribution of the simplicial
depth in the second model does not depend on the unknown parameter, it follows that
the asymptotic distribution is equal in both models.

To prove the next Lemma, we add to the random vectors 7, = (Y,,T,,) a random
variable S,, so that the second model bases on random vectors Z, = (Y,,,7,,S5,). In
Section 6, we work out this idea.

Lemma 1 Let (Y1,T, E1), ..., (Yn, TN, Ex) be i.i.d continuous distributed random vectors
such that there is a 8 € IRY with

Y, =00+ 0Th1+ ..+ 0, \Tpy1+ E,=2(T,)"0+ E,,
where T,, = (Ty1, .o, Tng—1) and x(T,,) = (1, Tha, oo, Thg—1)-

Suppose that

o Py(Y, —x(T,)"0 > 0|T,) =
° P@(Yn — l’(Tn)Te = O’Tn> =
. o=

VTS (1 + 751

That is, T,, has a centered, multivariate Cauchy Distribution. Let Z, = (Y,,T,). Then
the asymptotic distribution of the simplicial depth which is based on the dependent variable
Y, and the regressor X,, is equal to the distribution given in Theorem 1.

A similar idea is used to show that the random vector 7,, does not need to be centered.
The next Theorem generalizes Lemma 1:

Theorem 2 Let (Y1,T1, E1), ..., Yn,Tn, Ex) be i.i.d continuous distributed random vec-
tors such that there is a 60 € IR? with

Y, =00+ 0Th1+ ..+ 0, 1Tpy 1+ E,=2(T,)"0+ E,,

9



where T,, = (Ty1, oo, Tng—1) and x(T),) = (1, Tha, ooy Thg—1)-

Suppose that

VS (L4 (= ) TRt — )2

That is, T,, has a multivariate Cauchy Distribution. Let Z, = (Y,,T,). Then the asymp-
totic distribution of the simplicial depth which is based on the dependent variable Y, and
the regressor X,, is equal to the distribution given in Theorem 1.

The assumption of Cauchy distributed regressors is a technical requirement resulting
from the proofs. In a simulation study we checked how the simplicial depth test controls
the alpha level for different sample sizes and different distributional assumptions for the
explanatory variables. In the model

Y,=00+0,T,1+ 01,2+ E,
we tested the null hypothesis

Hy: 0 =0 against H; : 0 #0
to the asymptotic level &« = 0.05. The observations are simulated under the null hypothesis
with T,, ~ N3(0,1) or T,, ~ Cauchy,(0,I) respectively, where I is the identity matrix.

The probabilities to reject the null hypothesis, estimated from 10000 samples with sample
size 50 or 100 respectively, are given in Table 2.

Table 2: The estimated probability to reject the null hypothesis

N ‘ Cauchy ‘ Normal ‘
50 0.06 0.06

100 0.05 0.05

Thus, the test may also be applied to normal distributed explanatory variables. For a
power comparison with other existing tests in the case of simple linear regression (¢ = 2)
see Wellmann et al. (2008).
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5 Application: Test for multiple regression through
the origin

The North American Sunfish ”pumpkinseed” (Lepomis gibbosus) was introduced to Eu-
ropean waters about 100 years ago. Near Brighton, 162 specimens were collected in 2003
from the Tanyards fisheries pond. Nineteen landmarks (see Figure 1) were identified for
each fish.

9
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Figure 1: Landmarks

In this section, we want to find out relationships between the landmarks. We restrict
ourselves on those relationships, that can be tested within the model for multiple regres-
sion through the origin (for other ones, see e.g. Tomecek et al. 2005 or Wellmann et al.
2007). We rotate, rescale and translate the fishes (the landmarks), such that landmark
10 (anterior tip of the upper jaw) is equal to (—3,0)” and landmark 11 (caudal fin base)
is equal to (3,0)7.

Let A2 = (AL, ) ,)" € IR? be the landmark number p of the n-th transformed fish.
We choose 3 landmarks near the origin and define the center of the fish as a convex com-
bination, for which the hypothesis, that it is centered cannot be rejected componentwise
with the sign-test. We take the center of a fish to be

T, = 0.34 A® +0.22 A2 + 0.44 \].

Figure 1 shows, that the horizontal position of the anterior edge of the dorsal fin base )\,131
is nearly equal to the horizontal position of the anterior edge of the pelvic fin base )\}%1.
Indeed, the sign test for testing that



is centered provides the very high p-value 0.937. We call y,, the fin base difference in this
paper.

We test within the model for multiple regression through the origin (¢ = 2), how Y,
depends on the center X, = (Xn71,Xn72)T of the fish. Therefore we choose a random
sample that consists on 50 fishes. The original data are discrete, due to rounding errors.
To make them continuous, we add a small uniformly distributed random number to each
observation, such that we would obtain the original data by rounding.
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Figure 2: A deepest plane with #; = 0 and Figure 3: A deepest plane with #; = 0 and
least squares fits at the z,, ;-axis the least square fit at the z,, o-axis

The parameter with maximum simplicial depth is Op = (—0.5411, —0.8660)T and the
least squares fit is 512 = (0.9152, —1.1676)". At first we test the hypothesis, that X, ; has
no influence on Y,,, that is, Hy : 6 = 0. The test statistic depends on the depth of the
deepest plane with 6; = 0, given by the parameter (0, —0.6952)7 (see Figure 3). The test
statistic is 0.122, which is more than the 40% quantile of the asymptotic distribution and
thus, we have no rejection (see Table 1). Hence, we may assume that Y,, does not depend
on the horizontal position of the center. Contrary to this result, the classical F-test rejects
this hypothesis with respect to a significance level 5% (p-value = 0.028). This is due to
the outlier in the left lower corner of Figure 2. The outlier strongly influences the first
component of the least squares fit 6;,, who’s first component is positive (see the dashed
line in Figure 2).

Without the outlier, the least squares fit is 6, := (—0.4958, —0.9630)7 so that its first
component is negative. Then the classical F-test would not reject the null-hypothesis with
respect to a significance level 5%. Note that the least squares fit for the data without the
outlier is close to the parameter p with maximum simplicial depth.

On the other hand, the hypothesis that X, » has no influence on Y,,, that is, Hy : 6 =0
has to be rejected with respect to a significance level 2%, since the test statistic —2.184 is
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near the 1% quantile of the asymptotic distribution. In particular, the deepest plane with
0, = 0 given by the parameter (—1.2,0)7 gives not a good description of the data (see
Figure 2). The classical F-test also rejects the null-hypothesis and provides a p-value of
0.0001. Indeed, the least square fit is strongly decreasing at the x,, o-axis (see the dashed
line in Figure 3).

We conclude that Y,, depends on X, 5, but not on X, ;. As shown in Figure 3, the
fin base difference becomes smaller if the center of the fish is shifted upwards. Roughly
speaking, ALY shifts to the left and/or A} shifts to the right, if the center is shifted upwards.
This is possibly due to a curved vertebral column. If this interpretation is correct, then one
could take into consideration a nonlinear transformation of the landmarks before further
investigations, such that the vertebral columns of the transformed fishes can expected to
be a straight line.

6 Proofs

See also Wellmann (2007) for details of the proofs.

Proof of Proposition 2
Let 21,z € R\{0}.
For j =3,..,q+1let W; :=
and for j = 1,2 let

AX] U _ W3>< ><Wq+1
)

HAX I (W3 ... x W]

K*(z;) = {we R": (Az;)"w >0},
K™ (z;) = {we R": (Az;)"w < 0}.

Then we have

a)

1
K($1,.’L’2) + 5 = x] ( . X Xq+1) [L‘g(Xg X ... X Xq+1) < O)
det(%l,Xg, Xq+1) det(l'Q,Xg, ...,Xqul) < O)
det( (l‘l,Xg, q+1)) det(A(xg, Xg, ...,Xq+1)) < 0)
det(Axl, AXs, .., AXq+1> det(Axg, AXs, ., AXq+1) < O)

(
(
(
(
(det(Axy, Wi, ..., Wiq) det(Axo, Wi, ..., Wyq) < 0)
(
(
(

|
T YU

= P((Az1)"U (Ax2)"U < 0)
P(U e K (x)) N K~ (x)) + P(U € K~ (x1) N K*(22))
P(U e KT (x1)) N K™ (x9)) + P(—=U € K" (z1) N K™ (x3)).
Because of —U ~ U, it follows that

’C(ZL‘l,I'Q) =2 P(U € K+(l'1) N K_(ZEQ)) - %
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Since Wi, ..., W 41 are uniformly distributed on the unit sphere, this is the case also for
U. The proportion of the unit sphere, that is contained in KT (x1) N K~ (x2) is equal to
the angle between Az, and Aw,, divided by 2.

Hence,

<Az, Az 1
K(xl,l’g) = 2%—5
1

<< AZL’l AQ?Q >> 1 0
= — arccos , — —.
m || Az || [[Aza|] 2

Proof of Proposition 3

Since the the required Gegenbauer functions have different definitions for ¢ = 2 and ¢ > 3,
both cases have to be handled separately. At first, we investigate the case ¢ > 3.

For brevity let us write A := 7. For all s, € S we have

1 1
K(s,t) = —arccos(< s,t>)— 3
T

— %arccos(cos@(s,t))) —
= k(cos(<t(s,t))),

N | —

where k(o) := Larccos(o) — 3 € L*[—1,1].
Since the kernel function only depends on cos(<((s,t)), it follows by Feny6 and Stolle
(1983, p.273), that {S](ﬁ)} is the complete system of eigenfunctions of Tk with eigenvalues

A A . forp e Ny, wh
p = m »Cp orpc 0, where
i)’

o nl(n+p)

¢ = /1 k(o)Cg(a)(l — UQ)W%”CZ o.

1

We denote by C’g the n + 2-dimensional Gegenbauer function. Useful properties of this
function are derived in Tricomi (1955).
Since A > 0 we have

[L50A+9) ,(eia-t),

C)\(:E) = — . p .Z'),
! [T+ 5 +7)
where

k—1 p—k—1

@) 1 P Ho(p+afk+1+m)- HO (B+k+14+m) 3 N

PP (x) = - ) == R (r = 1"z +1)

D I(ph — |
o i kl(p — k)!
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is a Jacobi polynomial. For instance, see Tricomi (1955, p.161 and p.178).
222—1

By the doubling formula of the Gamma function I'(2z) = <-—T'(z)I'(z + 1) we obtain:

FAVTELE+3)
FA+HTO+5+3) 7

Ap = ™p

Because of C3 = 1 and arcsin(—x) = — arcsin(z) we obtain
1
1 1
o = / — (arccos(z) — g) (1- :c2)/\ 4z
1 . 9 P
= — | Zarcesin(z)(1—2%)" %da
0 A1 | Al
- —/ —arcsin(z) (1 — 2%)" *da — / —arcsin(z) (1 — 2*)" *dz
0

1™ s

! 1 A—1 1 1 A—1
= —/ —arcsin(—z)(1 —2%)" *dx — / —arcsin(z) (1 — 2%)" 2da
0 0

s 7T
= 0.

Hence, Ao = 0. It is well known (see for example
http://functions.wolfram.com/Polynomials/GegenbauerC3/21,/01/02/02/), that the func-
tion

2\

142
et

F(z) = —

has the derivative )

F'(z) = CMa) (1 - 22)" 2.

This is needed to simplify ¢, for p > 0.

[

Let p > 0. Since arccos'(z) = —(1 — xz)_5 we obtain by integration by parts:

o = [ Gareoste) - DO ) L
_ %/_11 arccos(x)CA(x) (1 — 22) 2dx % /_11 CN@)C@) (1 — 22) Hda
T p179 % /_ 11 arceos(2) (@) (1 — #2)* 2dx — 0
= (1) arceos(a)), - /_ 11 arccos!(x)F(x)d )
_ %(o_(n/_l1 (1—4%) *F(x)d )
- —% / 1 <1—x2> %ﬁm 2)(1- %)
= p+ P / Ol z) (1 - 2?)d .

15



The calculation of this integral is somewhat tedious, so we give only the result:

FE+r+3) (5
T(Z+A+1)T(2+1)

sin (EW)Q.

1
/ Coti(z)(1 - .CEQ))\dx = 5
-1

An other (rather ugly) expression for this integral can easily be obtained by the explicit
representation of C;}fll. Note, that A +1 = . Putting together all steps, we obtain:

s, TG (E+5)

Ap

COTORRTEAY A
+%) p(/\+g)/_10pl(:c)(1 x)da:

Vs
D TGy TE)
1

_ = T 1T(3)” sin (3m)

- TOA+L) T(A+2+1)° 7

_ _32 78 F(%)ﬁ“(g ? sin (gw)z
2TE) T+t ™

Now let ¢ = 2. The eigenvalues for ¢ = 2 can be obtained by calculating the formula

Ap = /o ’ (l arccos(cos(o)) — %) cos(po) do,

™

given in Feny6 and Stolle (1983). It’s not difficult to show, that Ay = 0 and for p € IN we
have

Ay = /Oﬂ(f_%) cos(pa)da—l—/ﬂ(%r_a—%) cos(po)do

T - 7r
1. 2(1-—

_ 1, 2(1 — cos(pm))
2 p2m?

: 2
_ —127r (2 sm(gﬂ)) ‘
2 p 0w

In order to validate the last equation, note that sin({n)
Hence, the proposition holds also for ¢ = 2. O

2 is just an indicator function.

Proof of Lemma 1
We compare the simplicial depth in the statistical model for Zi, ..., Zy with a simplicial

16



depth for i.i.d. random variables Z, ..., Zy, where Z, is obtained from Z, by appending
an independent standard normal dlstmbuted random variable S,,. That is, Z, = = (Zn, Sn)

and PZ" ' PZ” ® Ppr(o,1) is the distribution of Z,. Take fy to be a density of PZ"

Simplicial depth dg and tangent depth dr of ¢ with respect to the observations z, =
(Yn, tn, Sn) are based on the dependent variable h(Z,) = s,y, and the regressor o(Z,) =
spx(ty). Note, that the sign of the residual of observation Z,, = (z,, s,,) is given by

sigg(2,) = sign(spyn — snx(t,)70)
= sign(s,) sigy(zn).
Since
dr(0,2) = min#{sign(sn) sigy(zn)snu’ x(tn) > 0}
= m;n#{SIge(Zn)u (tn) > 0}
= dr(0,z),
tangent depths are equal in both models for sq,...,sy # 0. This holds also for the
harmonized depths and thus, also the simplicial depths coincide, that is, for all § € © and
all Z, = (2, 8,) € Z2 X IR with s,, # 0 for n =1, ..., N, we have
ds(9,z) = ds(6, 2).
Thus,

N PP ({z2:ds(0,2) <A} = (@Y, PF) @ (9N Pyion)({z : ds(d.2) < A} x RY)
= N P7({z:ds(,2) < \})

for all A > 0, so that also the distributions of the simplicial depths are equal in both
models.

It remains to show that Z,, ..., Zy satisfy the assumptions of Theorem 1. Since the
random Vquables are continuous distributed, condltlonal densities can be used to check
that sigy(Z,) is positive (negative) with probability 3, given 9(Z,) = S,x(T),).

- 1 0
The main part is to show that K(Z;) := Av(Zl) with A = ( ) ) is

0 X2
uniformly distributed on the unit sphere S. The random variable U(yy,t1,s1) := Z’%tl
is multivariate Cauchy-distributed with density

. I'(%) 1
Ve (1 4+ ulu)2

A

and for Z; = (Y1,T1,S1) we can write

\/H—U(;)TU(Z) ( U(121> >

17
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It suffices to show that

(V) . HIZVK
() - [ ace

for each event V C SN IR~ x IRI~! and each event V C SN IRy x IR which is open
in S, where p is the uniform measure on S with pu(S) = 7,.

Consider the case V C SN Rwo x RT™L. Letting

UV):={ue R"": (1, u1, .y ug 1)t €V},

1
V1+uTu

the function

G UV) = V() = ﬁ((—l)”l,ul, ttg 1)

is a local parametrization of V. Hence,
uv)= [ Vouwa,
0%

where the gram determinant gi(u) is defined as

B [ Ny % 1\
GG () e Y G () gt ()
g(u) = det o : o o : o
;1'=1 quil (U)a—ui(U) ;1:1 Buqil (U) Buqil (U)
It is tedious to check that
1 T T
g¥(u) = AT alaaD det((1 4+ v u)l —uu'),
where I = (eq, ..., e,-1) is the identity matrix. With a1 ; := (1 +u"u)e;, and as; :== —u;u

for j=1,...,g — 1 we have
det((1 +u"u)l —uu®) = det(aig + agq, ..., a14-1 + G2,4-1)-

Since the determinant is linear in each column and since the determinant of a matrix is
0, if two columns are linearly dependent, we obtain

det((1 +u"u)l —uu™) = (1 4+ u"u)??
(see www.owlnet.rice.edu/~fjones/chap3.pdf, Problem 3-41).

It follows that gu(u) = and thus,

1
(1+uTu)e

/ 1
V)= ——————d\' for VCSNRox R (1
u(V) /U(V) 1+ uTa)i or >0 (1)
18



Now let V.C SNIRsy x IR or V C SN IRy x IRI™" be open in S. Leti=1or
i = 2, such that (—1)'V C SN Ry x R~ For brevity we write Py := P

With T(yp, tn, $n) = t, and S(yp, tn, Sn) = Sn, we have

/1d15;< =
14

p@(K € V)
= DPp(K eV|S>0)Py(S >0)+ P(K € V|S <0)Py(S < 0)

= Ax(T) 1 Ax(T) 1
= Pl V3 P € Vs
_ 1 Am() i

= Iy € YY)

1 1 1 1 ~1 i
= §P9(¢ W(U))Ew (=1)'V))
= LB ev (1))

1 U g—1
- . / 7Y ()

P~ H((=1)'V)

G L

2/ (1 +uTu)?

P~ H((-1)7V)
0 (DY) V)
1(S) 1(S)

It follows that the assumptions of Theorem 1 hold, so that ds has the asymptotic
distribution, mentioned there. Since the distributions of the simplicial depths are equal,
it follows that also dg has that asymptotic distribution. O

Proof of Theorem 2

We compare the simplicial depth in the statistical model for Zl, ey ~ Py with a
simplicial depth of i.i.d. random variables Z1, ..., Zy, where Z,, == (Y, Tp,) == (Y, Tpy — 1)
is obtained from Z, by shifting T,,. Let ¢(0) := (6 + 61111 —i— e+ Op1ptg—1,01, ..., 0,-1).
The position of the true regression function gy relative to realizations zy, ..., zy is equal to
the position of gg(t — 1) = g,-1(p) (1) relative to the shifted observations Z, = (Yns tn — 1),
so it is convenient to assume that Z, ~ (P, _1(9)) where Z (Yns tn) = (Yn, tn — p). That

is, the distribution of Z, is defined by Py := Pv_ for § € ©.

Simplicial depth dg and tangent depth dr of 8 with respect to the observations z, =
(%, tn) are based on the dependent variable 7, and the regressor z(f,). We have to show
that the distributions of the simplicial depths are equal in both models and that the
second model satisfies the assumptions of the previous theorem.

19



The sign of the residual of observation z, = (y,,t, — ) = z, — (0, u) with respect to
parameter () is given by

ngw(a)(én) = sign(y, — 2(t, — ) ()
= sign(y, — x(t,)"0)
= sigy(zy)-

Since the function F': R[X] — R[X]| with p(X) — p(X + u) is bijective, it follows that
dr(p(0),2) = mingH{n : sig, ) (Za)u" w(tn — ) > 0}
= min#{n - sigy (o) F0) (b, — ) > 0}

= m7i$101#{n ssigy(zn)u’ 2(t,) > 0}
= dT(0,2>.

This holds also for the harmonized depths and thus, for all 6 € © and all z;,...,z2y € Z
we have

ds(p(9), Z(2)) = ds(6. 2),
where Z(z) := ((y1,t1 — i), ..., (yn, tn — p)). Since for all A > 0 we have

D01 Poo)({Z 1 ds(0(0),2) < A}) = @3 P ({2 : ds(p(6),2) < A})
= (®nN:1Pa)Z({% tds(p(0),2) < A})
= @ Py({z: ds(0(0), Z(2)) < A})
= N Py({z:ds(,2) < \}),

it follows that (@), Pp)%s®) = (®7]¥:1}3@(9))JS(‘P(9)") for all # € O.
It remains to show that 7, ..., Zy satisfy the assumptions of the previous theorem.

At first we show, that for s € {—1,1} and for all # € © the conditional probability that

sigy(Z,) is positive (negative), given v(Z,) := x(T,) is equal to 5. For all v/ € Tmage(v)

we can write v’ = x(t' — p) with a ¢’ € IR7!. Tt follows that

Pol{za: sigo(3a) = s}o =) = PZig)({50 < sigg(Za) = sho = v)
“10)({za < sigg(Z(20)) = s}lvo Z = a(t' — )
= Pp1(9)({2n 1 sig,1(0)(2n) = s}Hv =1 t')

| —

To show that T}, has a centered, multivariate Cauchy dlstrlbutlon we have to calculate
it’s density fg , where f, is the density of Py and T (Un, tn) :=t,. Take fy to be the density

20



of Py. Then,

() = / Fo (W )
= /fgl(e)(ynatn)dyn
= /f@‘l(e)(ynvtn+u>dyn

= an (tn + N)
I'($) 1

V[S] (1 + 75 10)3

Hence, the assumptions of Lemma 1 hold, so that ds has the asymptotic distribution,
mentioned there. Furthermore, it follows that also dg has this asymptotic distribution. O
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