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Abstract. We give a review on the properties and applications of M-estimators
with redescending score function. For regression analysis, some of these redescending
M-estimators can attain the maximum breakdown point which is possible in this setup.
Moreover, some of them are the solutions of the problem of maximizing the efficiency un-
der bounded influence function when the regression coefficient and the scale parameter are
estimated simultaneously. Hence redescending M-estimators satisfy several outlier robust-
ness properties. However, there is a problem in calculating the redescending M-estimators
in regression. While in the location-scale case, for example, the Cauchy estimator has only
one local extremum this is not the case in regression. In regression there are several local
minima reflecting several substructures in the data. This is the reason that the redescend-
ing M-estimators can be used to detect substructures in data, i.e. they can be used in
cluster analysis. If the starting point of the iteration to calculate the estimator is coming
from the substructure then the closest minimum corresponds to this substructure. This
property can be used to construct an edge and corner preserving smoother for noisy im-

ages so that there are applications in image analysis as well.
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1 Redescending M-estimators

Regard a general linear model y, = )8 + 2z,, n = 1,..., N, where y, € R is the
observation, z, € R the error, z,, € R? the known regressor and g € RP the unknown

parameter vector. For distributional assertions, it is assumed that the errors z, are
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Table 1: Score functions of two redescending M-estimators
realizations of i.i.d. random variables. Set y = (y,...,yn)" and X = (z1,...,2x)". An

M-estimator 3 = 3(y, X) for 3 is defined by
N
. _ .
c > " plyn — =, B).
f € argmin 2 p(yn — 2, 3)

Special cases of an M-estimator are the least squares estimator for p(z) = 22 and the
Li-estimator for p(z) = |z|. If the derivative ¢ = p’ of p is redescending, i.e. satisfies
lim, 1o p'(2) = 0, then the M-estimator is called a redescending M-estimator. Table

1 shows p and 1 = p’ of two redescending M-estimators.

2 Redescending M-estimators in regression analysis

Redescending M-estimators for 5 have special robustness properties. Some of them have
the highest possible breakdown point. For regression estimators, there are two types of
breakdown point definitions. The original definition due to Donoho and Huber (1983)
allows outliers in the observations as well as in the regressors. Maronna , Bustos and
Yohai (1979) found that under this definition, all M-estimators with nondecreasing v as
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the Li-estimator behave as bad as the least squares estimator. All these M-estimators
have a breakdown point of % which means that they can be biased arbitrarily by one
outlier. He et al. (1990) and Ellis and Morgenthaler (1992) found that the situation
changes completely if outliers appear only in the observations and not in the regressors,
a situation which in particular appears in designed experiments where the regressors are

given by the experimenter. In this situation the breakdown point is defined as

N yeEYMm (v)

(8,9, X) = min {M; sup [|B(y, X) — B(7. X)|| = oo} ,
where

Yu(y) = {7 € RY; t{n; yu #7,} < M}

Using this defintion, an upper bound for the breakdown point of regression equivariant
estimators is according to Miiller (1995, 1997)

iLN—N(X)qJ,

* 2 X <
€<ﬁ7y7 )—N 2

(1)
where N (X) is the maximum number of x,, lying in a subspace of R?, i.e.
N(X) = supt{n; =3 =0}
B0

The upper bound is attained by some least trimmed squares estimators (Miiller 1995,
1997) and by redescending M-estimators whose score function p has slow variation, i.e.
satisfies
t
lim pltu)
t=o0 p(t)

=1forallu>0 (2)

(Mizera and Miiller 1999). In particular the score function of the Cauchy M-estimator
satisfies (2). This score function is shown in the first row of Table 1. Up to now it
is unclear whether the M-estimators with slowly varying score function are the only M-
estimators whose breakdown point attains the upper bound for any configuration (design)
of the regressors. For special designs also the breakdown point of other M-estimators as
of the Lj-estimators can attain the upper bound (Miiller 1996).

The results of Mizera and Miiller (1999) were shown for known scale. However re-
descending M-estimators are very sensitive with respect to the scale parameter so that
in practice the scale parameter must be estimated simultaneously. Mizera and Miiller
(2002) showed that also the breakdown point of some tuned Cauchy estimators which

simultaneously estimate the regression and the scale parameter attains the upper bound
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(1). A M-estimator for simultaneous estimation of the regression and scale parameter is

given by

(8,6 Eargmmz < )—i—Klna

where K is the tuning constant. The estimator is called untuned if K = N. Mizera and
Miiller showed their result only for the Cauchy M-estimator although it seems plausible
that it holds also for other M-estimators. The high breakdown point behavior of the
Cauchy M-estimator was also found by He et al. (2000) who compared the behaviour
of t-type M-estimators with respect to the original definition of the breakdown point of
Donoho and Huber (1983). However the situation changes completely when orthogonal
regression in an errors-in-variables model is considered. Then according to Zamar (1989),
any M-estimator with unbounded score function p has asymptotically a breakdown point
of zero. In particular the Cauchy M-estimator for orthogonal regression has an asymptotic
breakdown point of zero.

But redescending M-estimators are not only good with respect to the breakdown point
but have also some optimality properties with respect to efficiency under bounded influ-
ence function. This can be shown by extending the class of M-estimators to estimators

given by
(8,6 Eargmlnz (yn_$ n0 n)+N1na

or more general to estimators (3, 5) which are given as solutions of

w( %0 n)xlzo 3)

N

2

N T T

D (1 — (y” _anﬁ,xn> I _0‘75"5) — 0. (4)
n=1

Under suitable regularity conditions, the asymptotic covariance matrix of these estimators

is (see Hampel et al. 1986)
0_2 Vﬂ (w7 5) 0
0 Vy(,0) |’

Va(¥,0) = Z(0) " Qp(x,6) Z(9)™"
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and

Vo (¥, 0) = Qo (1, 0) /M, (¢, 6)*

with

Thereby ¢ denotes the asymptotic design measure. The influence function of the M

estimator is (see Hampel et al. 1986)
IFs(z,2,1,9)
IF,(z,2,1,8) )’

IFs(z,2,1,8) =Z(0) 'z (2, )

where

and

[FU(Z7x7wa5) = (Z¢(Z,$) o 1)/Ma(w75)

For estimation of only the regression parameter the most efficient M-estimators with
bounded influence function are solutions of minimizing trV(¢, J) under the side condi-
tion sup, , [[F(z,7,1,0)| < bg. These solutions were characterized by Hampel (1978),
Krasker (1980), Bickel (1981, 1984), Huber (1983), Rieder (1987, 1994), Kurotschka and
Miiller (1992) and Miiller (1994, 1997) and are given by nondecreasing score functions
1. For simultaneous estimation of the regression and scale parameter, the most efficient
estimators with bounded influence function have score functions ¢ which simultaneously

minimize
trVs(¢,0) and V,(1,9)
under the side conditions that

sup | [ Fj(z, 2,1, 6)| < bg and sup|[Fy(z,2,1,6)| < b,
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It is not easy to give a complete characterization of these score functions. But the results
of Bednarski and Miiller (2001) for the location-scale case indicate that the optimal score

functions are given by

U(z,z,) = a(xy,)/z for |z] > c(x,),

where a(x,) and c(z,) are quantities depending on the regressors. This means that the
optimal M-estimators are redescending M-estimators. The corresponding score function
p of the form p(z,z) = a(z)log(z) is slowly varying in the sense of (2). Although the
score functions p differ by its dependence on the regressors = from the score functions
considered in Mizera and Miiller (1999), the result of Mizera and Miiller is still valid.
This can be seen by simply extending their proof to the general type of score functions
which is possible since the regressors are fixed without outliers. Hence the most efficient
M-estimators with bounded influence function have also a breakdown point which attains
the upper bound (1) for breakdown points.

The main problem with the most efficient M-estimators with bounded influence func-
tion and highest breakdown point is their computation. Because of the redescending
form of the score function, the objective function has several local minima in the general
case and thus there are several simultaneous solutions of (3) and (4). One exception is
the Cauchy estimator for location and scale where only one local extremum exists if the
distribution is not concentrated with equal probabilities at two points (see Copas 1975).
However, Cauchy estimators for regression already have the general problem of several
local extrema as Gabrielsen (1982) pointed out. But highest breakdown point and even
consistency can be only achieved if the global minimum of the objective function is used.
In the location case, the global minimum is often the symmetry center of the underlying
distribution so that the global minimum can be found with Newton-Raphson method
starting at a consistent estimator for the symmetry center (Andrews et al. 1972, Collins
1976, Clarke 1983, 1986). However for asymmetric distributions or regression the situ-
ation is more complicated (see Freedman and Diaconis 1982, Jureckova and Sen 1996,
Mizera 1994, 1996). One possibility of finding the global minimum is to calculate each
local minimum. For smooth score functions like that of the Cauchy M-estimator for re-
gression this can be done by Newton-Raphson method starting at any hyperplane through
p points of the data set. An alternative method is the EM-algorithm proposed by Lange

et al. (1989) for computing regression estimators with ¢-distributed errors.



3 Redescending M-estimators in cluster analysis

The disadvantage of redescending M-estimators that their objective function has several
local minima becomes an advantage in cluster analysis. Morgenthaler (1990) already
pointed out that each local minimum corresponds to a substructure of the data and
Hennig (2000, 2003) used a fixed point approach based on redescending M-estimators
for clustering. However the use of redescending M-estimators in cluster analysis has
the problem that local minima do not correspond only to hyperplanes (lines in simple
regression) which can be viewed as cluster centers. Local minima can also correspond to
hyperplanes orthogonal to hyperplanes given by clusters or, more general, to hyperplanes
fitting several clusters or even all clusters. Arslan (2003) even found that the smallest
local minimum often correspond to the over all fit. She therefore developed a test for
detecting the "right” local minima, i.e. those minima which correspond to regression
clusters.

The problem of finding the "right” local minima can be facilitated by using more
extreme redescending M-estimators and small scale parameters. For example the score

function of the second line of Table 1, i.e.

p(z) = —exp(—2?) (5)

can be used which is up to a constant the density of the normal distribution. M-estimators
based on such a score function cannot be interpreted anymore as maximum likelihood
estimators as it is the case for the Cauchy M-estimator. The score function is also not
anymore slowly varying in the sense of (2). But the integral of the score function is finite
which is not the case for the other M-estimators which can be interpreted as maximum
likelihood estimators. The property of a finite integral leads to a relation of M-estimators
to kernel density estimators, an observation recently used also by Chen and Meer (2002).

For that note that minimization of

()

s
n=1 N
is equivalent to maximization of

P :__i1 <yn—x ﬁ) ©)

n=1

Here sy denotes a given scale parameter depending on the sample size N. In the context of

kernel density estimation, the parameter sy plays the role of the bandwidth. In particular



for the location case, where x,, = 1 for alln = 1,..., N, we have the well known kernel

. 1L 1 Un — U
In(p) = N 2 ;P ( Sn ) .
It is also known (see e.g. Silverman 1986) that the kernel density estimator f(u) satisfies
dim () = f() (7)

with probability 1 if [ —p(z)dz =1, sy converges to zero and some additional regularity

density estimator

conditions are satisfied. If the observations are coming from different location clusters,
their common distribution has a density with several local maxima. The points of the
local maxima can be interpreted as the true cluster centers. Hence the convergence (7)
implies the convergence of the local maximum points of fN to the local maximum points
of f and thus to the true cluster centers. This holds of course under some regularity
conditions.

This reasoning can be used also for regression clusters as Miiller and Garlipp (2002)
pointed out. Miiller and Garlipp proved that, like fy, also hy of (6) converges to a
limit function h if [ —p(z)dz = 1, sy converges to zero and some regularity conditions
are satisfied. Examples showed that the highest local maxima of this limit function A
correspond to real regression clusters. However there are also other local maxima with
no relation to a real regression cluster, but these are much smaller so that they can be
distinguished from the other. Because of the convergence of hx to h it can be expected
that the highest local maxima of hy correspond to real clusters and that they can be
found by studying the height of the local maxima. Miiller and Garlipp showed also that

the same reasoning holds for orthogonal regression in an errors-in-variables model by

maximizing
N
- 1 1 (Y, ) )a — b
hn(a,b) = ——» —p| —F"——
o =5 > o (e
with respect to a € RP with ||a]] = 1 and b € R. Besides the rotation invariance, the

orthogonal regression has the advantage that the limit function h has an interpretation as
density. How regression clusters can be found by this method is demonstrated by Figures

2 and 3. For more explanations of this application, see the next section.

4 Redescending M-estimators in image analysis

We will consider here two problems of image analysis. One problem is to detect objects

and structures in the image. The other problem is to reconstruct a noisy image.
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Figure 1: Noisy Image Figure 2: Edge Points
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Figure 3: Regression Lines Figure 4: Heights of Maxima

For detecting objects and structures a widely used method in computer vision are the
Hough transform and the RANSAC method. Both methods can be interpreted as an

M-estimator based on the zero-one score function

p(z):{o if 2] < 1

1 if 2] > 1.

Recent development used also a smoothed version of the zero-one function or the biweight

function

plz) =

1—(1-2%)3% if|z| <1
1 if 2] > 1.

See e.g. Chen et al. (2001) for an overview. The methods mainly differ in the choice
of the scale parameter and how the local maxima/minima are found which correspond
to substructures/clusters. The methods of finding the right maxima/minima are always
as that of Chen et al. (2001) rather complicated. However Miiller and Garlipp (2002)
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demonstrated for the problem of finding the edges of a triangle that the local maxima
corresponding to the edge lines can be easily found by the height of the local maxima.
They used the negative of the score function given by (5) which is differentiable so that
the Newton-Raphson method can be easily applied for determining the local maxima. It
turned out that the result does not depend very much on the scale parameter. Moreover,
there is a natural choice of the scale parameter since, in a first step, points are determined
which should lie close to the edges. These points can be found by using a rotational density
kernel estimator, a method proposed by Qiu, P. (1997). The bandwidth of the rotational
density kernel estimator is the natural choice of the scale parameter. In the Figures 1 to 4
this method is demonstrated. Thereby, Figure 2 shows the points close to edges found by
the method of Qiu and Figure 3 provides the regression lines found by the cluster method.
Figure 4 shows that the three right regression lines 1, 2, 3 have significantly larger heights
of the local maxima.

For finding all local maxima/minima, the Newton-Raphson method starts at all hyper-
planes given by p data points, in the two-dimensional case at all lines given by two points.
Often the found local maximum corresponds to a cluster to which the starting hyperplane
belongs to. This is even always the case for the location case (p = 1, x, = 1). This
observation can be used for image denoising as Chu et al. (1998) proposed. If y, = y(v,)
n=1,..., N are the pixel values of the noisy image at pixel positions v,, = (u,, t,) lying
in [0,1]* then a reconstructed pixel value §(vg) at position vy can be determined by M-
kernel estimators for nonparametric regression introduced by Hérdle and Gasser (1984),

i.e. by

. . ) Yo U, — Vo 1 Yp — I

§(v0) = fiug =argm#m;gK< v ) §p< . ) :

where K is the kernel function and Ay the bandwidth. As long as p is convex and thus p’
not redescending, edges are smoothed. For edge preserving image denoising, Miiller (1999,
2002b) proposed kernel estimators based on high breakdown point regression estimators.
Chu et al. (1998) proposed M-kernel estimators with score function given by (5). But
the most important feature of the proposal of Chu et al. was to use as starting point
for the Newton-Raphson method the value y(vp), i.e. the pixel value in the center of
the window. This starting point ensures the edge preserving property of the estimator.
This estimator is even corner preserving as Hillebrand (2002) showed. He also showed
consistency not only for smooth areas but also for corners. A consistency proof for jump
points in the one-dimensional case can be found in Hillebrand and Miiller (2002) as well
and for more general situations in Miiller (2002a). Figure 7 shows how the corners and

edges are preserved by applying the method of Chu et al. on the noisy image in Figure 6.
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Thereby, the image in Figure 6 was generated from Figure 5 - an image created by Smith
and Brady (1997) - by adding normal distributed noise.

Figure 5: Original Im-  Figure 6: Noisy Image  Figure 7: Method of
age Chu et al.
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