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Abstract Least trimmed squares estimators are outlier robust since they have a high
breakdown point because of trimming large residuals. But the breakdown point de-
pends also on the design. In generalized linear models and nonlinear models, the
connection between breakdown point and design is given by the fullness parameter
defined by Vandev and Neykov (1998). As Müller and Neykov (2003) have shown,
this fullness parameter is given in generalized linear models by the largest subdesign
where the interesting parameter is not identifiable. In thispaper, we show that this
connection does not hold for all nonlinear models. This means that the identifiabil-
ity at subdesigns cannot be used for finding designs which provide high breakdown
points. Instead of this, the fullness parameter itself mustbe determined. For some
nonlinear models with two parameters, the fullness parameter is derived here. It is
shown that the fullness parameter and thus a lower bound for the breakdown point
depends heavily on the design and the parameter space.

1 Introduction

We assume a nonlinear model given by

Yn = g(tn,θ )+Zn,

whereY1, . . . ,YN are independent observations,Z1, . . . ,ZN are independent errors,
θ ∈ Θ ⊂ ℜr is an unknown parameter,t1, . . . ,tN ∈ T ⊂ ℜq are nonrandom exper-
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imental conditions, andg : T ×Θ → ℜ is a known function which is nonlinear in
θ . SetY = (Y1, . . . ,YN)⊤ with realizationy= (y1, . . . ,yN)⊤ and letD = (t1, . . . ,tN)⊤

be the design. The density ofYn is given by

f (yn, tn,θ ) = h((yn−g(tn,θ ))2) (1)

whereh is a monotone decreasing function which is known. Then the negative log-
likelihood function given byln(y,D,θ ) = −log( f (yn,θ )) is a monotone increasing
function of|yn−g(tn,θ )|.

Here we will consider the breakdown point behavior of estimators
θ̂ : ℜN → Θ . The breakdown point of an estimator̂θ is defined according to
Rousseeuw and Leroy (1987) by

ε∗(θ̂ ,y) :=
1
N

min{M;

there exists no compact setΘ0 ⊂Θ with {θ̂(y); y∈ YM(y)} ⊂Θ0
}

,

whereYM(y) :=
{

y∈ ℜN; card{n; yn 6= yn} ≤ M
}

is the set of contaminated sam-
ples corrupted by at mostM observations. Often the conditionΘ0 ⊂ Θ is replaced
by

Θ0 ⊂ int(Θ) (2)

to include also the implosion point for restricted parameter spaces. To facilitate the
task here, we will consider onlyΘ0 ⊂Θ which means that the breakdown point is
only an explosion point.

There are several approaches to high breakdown point estimators for nonlinear
models. See e.g. Stromberg and Ruppert (1992), Vandev (1993), Sakata and White
(1995), Vandev and Neykov (1998). High breakdown point estimators are in par-
ticular obtained by trimming large residuals. See e.g. the least trimmed squares
estimators in Rousseeuw and Leroy (1987), Procházka (1988), or Jurečková and
Procházka (1994). However, in generalized linear models or nonlinear models it is
more appropriate to trim the smallest likelihood functionsor the largest negative
loglikelihood functions as Vandev (1993) and Hadi and Luce˜no (1997) proposed.

Trimming the least likely observations, i.e. the observations with the largest
ln(y,θ ), leads to trimmed likelihoods. Maximizing the trimmed likelihood provides
the trimmed likelihood estimatorTLh(y) given by

TLh(y) := argmin
θ

h

∑
n=1

l(n)(y,D,θ ),

whereN− h observations are trimmed andl(1)(y,D,θ ) ≤ . . . ≤ l(N)(y,D,θ ). Van-
dev (1993) and Vandev and Neykov (1998) studied the breakdown point behavior
of trimmed likelihood estimators and showed a relation between the breakdown
point and the fullness parameterd of {ln(y,D, ·); n = 1, . . . ,N}. They defined the
d-fullness as follows.
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Definition 1. A finite setΨ = {ψn : Θ → ℜ; n = 1, . . . ,N} of functions is called
d-full if for every {n1, . . . ,nd} ⊂ {1, . . . ,N} the functionψ given by ψ(θ ) :=
max{ψnk(θ ); k = 1, . . . ,d} is sub-compact. Ifψ(θ ) := max{ψn(θ ); n = 1, . . . ,N}
is not subcompact, then the fullness parameter ofΨ = {ψn : Θ → ℜ; n = 1, . . . ,N}
is defined asN+1.

Thereby a function ψ : Θ → ℜ is called sub-compact if the set
{θ ∈Θ ; ψ(θ ) ≤C} is contained in a compact setΘC ⊂Θ for all C∈ ℜ.

Again we use here for simplicityΘC ⊂ Θ instead ofΘC ⊂ int(Θ) in the the
original definition of Vandev and Neykov.

The relation between breakdown point andd-fullness was worked out in more
detail by Müller and Neykov (2003). In particular they showed the following theo-
rem.

Theorem 1.Assume that{ln(y,D, ·); n = 1, . . . ,N} is d-full and
⌊

N+d
2

⌋
≤ h ≤⌊

N+d+1
2

⌋
. Then the breakdown point of a trimmed likelihood estimatorTLh satisfies

ε∗(TLh,y) ≥
1
N

⌊
N−d+2

2

⌋
.

Theorem 1 means in particular that the fullness parameterd should be as small as
possible to achieve a high breakdown point. Müller and Neykov (2003) also proved
that the fullness parameter of{ln(y, ·); n = 1, . . . ,N} in linear models and in many
generalized linear models satisfiesd = N (D)+1 where the so called identifiability
parameter

N (D)

:= max

{
N

∑
n=1

1D(tn); D ⊂ {t1, . . . ,tN} whereθ is not identifiable atD

}

was introduced by Müller (1995). In linear models and generalized linear models,
whereg(tn,θ ) = x(tn)⊤θ is satisfied, we have that

N (D) = max
0 6=θ∈ℜp

card
{

n∈ {1, . . . ,N}; x(tn)
⊤θ = 0

}
,

so thatN (D) provides the maximum number of explanatory variables lyingin a
subspace. This means in particular for linear and generalized linear models that
d = N (D)+ 1 is the smallest number so that every subset of the design with this
number of points provides identifiability ofθ .

Although Theorem 1 holds also for nonlinear models and identifiability can be
defined also for nonlinear models, there is no simple relation between identifiability
and the fullness parameterd which holds for all nonlinear models. This is shown in
Section 2. Section 3 and Section 4 treat the determination ofthe fullness parameter
for two special nonlinear models with two parameters. Thereby, nonlinear models
with unrestricted parameter space are considered in Section 3, and nonlinear models
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with restricted parameter space are studied in Section 4. Itis shown that the fullness
parameter and thus the lower bound for the breakdown point depends heavily on the
design and the parameter space. In Section 5, extensions of the results are discussed.

2 Identifiability and d fullness

If the density satisfies (1), then the monotony ofh and the logarithm implies with
the triangle inequality

max{lnk(y,D,θ ); k = 1, . . . ,d}

= max{−log(h((ynk −g(tnk,θ ))2)); k = 1, . . . ,d} ≤C

⇐⇒ max{|g(tnk,θ )|; k = 1, . . . ,d} ≤C2,

where the constantsC, C1, andC2 are independent ofθ , but depend ony. Hence the
following theorem holds.

Theorem 2.

{ln(y,D, ·); n = 1, . . . ,N} is d-full⇔{|g(tn,θ )|; n = 1, . . . ,N} is d-full.

Identifiability in nonlinear models is defined as follows.

Definition 2. θ is identifiable atD with respect tog if and only if

g(tn,θ ) = g(tn, θ̃ ) for all n = 1, . . . ,N =⇒ θ = θ̃

for all θ , θ̃ ∈Θ .

Identifiability in nonlinear models with more than two unknown parameters is of-
ten difficult to verify. Therefore, only a simple nonlinear model is regarded, namely
g(t,θ ) = α ·exp(β t). Then the following result holds.

Theorem 3. If g(t,θ ) = α · exp(β t) with θ = (α,β )⊤ ∈ Θ = [a,∞)× [b,∞) and
0 < a <

1
exp(bt) and D= t with t > 0 then we have

• θ is not identifiable at D,
• |g(t, ·)| is subcompact and thus{l1(y,D, ·)} is 1-full.

Theorem 3 means for all designsD = (t1, . . . ,tN) ∈ ℜN with tn 6= 0 for n =
1, . . . ,N that the fullness parameterd of {ln(y,D, ·); n = 1, . . . ,N} is 1 while the
identifiability parameter satisfiesN (D)≥ 1. Henced = N (D)+1, which holds in
linear and many generalized models, is not satisfied.

Proof of Theorem 3.Sincea <
1

exp(bt) , there existsα, α̃ with a < α < α̃ <
1

exp(bt) .

Setβ = ln
( 1

α
) 1

t and β̃ = ln
( 1

α̃
) 1

t . Then we haveβ , β̃ > ln(exp(bt)) 1
t = b and
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g(t,(α,β )) = α exp
(
ln

(
1
α
)

1
t t

)
= 1= α̃ exp

(
ln

(
1
α̃
)

1
t t

)
= g(t,(α̃, β̃ )), so thatθ =

(α,β )⊤ is not identifiable atD = t. Furthermore,|g(t,(α,β ))| = α · exp(β t) ≤ C
implies a ≤ α ≤ C

exp(β t) ≤ C
exp(bt) and exp(β t) ≤ C

α ≤ C
a so thatθ = (α,β )⊤ ∈

[
a,

C
exp(bt)

]
×

[
b,

1
t · ln

(
C
a

)]
which is a compact set. Hence{l1(y,D, ·)} is 1-full. �

A restricted parameter space likeΘ = [a,∞)× [b,∞) used in Theorem 3 is typical
for nonlinear models based on exponential functions with high breakdown point.
This is discussed in more detail in the following two sections.

3 Nonlinear models with unrestricted parameter space

In this section, nonlinear models based on the exponential function with two para-
meters are studied. If the design consists of one negative and one positive value then
no restriction of the parameter space is necessary.

Theorem 4. If t1 < 0 < t2 and g(t,θ ) = α +exp(β t) or g(t,θ ) = αt +exp(β t) with
θ = (α,β )⊤ ∈Θ = ℜ×ℜ then

max{|g(t1, ·)|, |g(t2, ·)|}

is subcompact.

Proof. Consider at firstg(t,θ ) = α + exp(β t) and let beC ≥ 0 arbitrary. Then
max{|g(t1,θ )|, |g(t2,θ )|} ≤ C implies −C ≤ α + exp(β ti) ≤ C for i = 1,2 so
that −C− exp(β ti) ≤ α ≤ C− exp(β ti) ≤ C for i = 1,2. Since t1 < 0 < t2, it
holdsβ t1 ≤ 0 or β t2 ≤ 0 for anyβ so thatα ≥ −C− exp(0) = −C− 1. Hence
α ∈ [−C−1,C].

Moreover, exp(β ti)≤C−α ≤ 2C+1 for i = 1,2 so thatβ ti ≤ ln(2C+1) for i =

1,2 which impliesβ ∈
[

ln(2C+1)
t1

,
ln(2C+1)

t2

]
. Hence max{|g(t1, ·)|, |g(t2, ·)|} is sub-

compact forg(t,θ ) = α +exp(β t).
Now considerg(t,θ ) = αt +exp(β t). Again, let beC≥ 0 arbitrary. Then

αti +eβ ti ≤C for i = 1,2 (3)

impliesαti ≤C−eβ ti ≤C for i = 1,2 so thatα ≥ C
t1

, α ≤ C
t2

. Hence there exists
k≥ 0 with−k≤α ≤ k. With thisk we obtain−kt1 ≥αt1 ≥ kt1, and−kt2 ≤αt2 ≤ kt2
so that

kt1 ≤−αt1 ≤−kt1, kt2 ≥−αt2 ≥−kt2. (4)

Inequality (3) also implieseβ ti ≤ C−αti for i = 1,2. With (4) we obtaineβ t1 ≤
C−αt1 ≤ C− kt1 andeβ t2 ≤ C−αt2 ≤ C+ kt2 so thatβ t1 ≤ ln(C− kt1), β t2 ≤

ln(C+kt2) andβ ≥ ln(C−kt1)
t1

, β ≤ ln(C+kt2)
t2

. Hence, there existsk′ ≥ 0 with −k′ ≤
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β ≤ k′ so that(α,β )⊤ ∈ [−k,k]× [−k′,k′]. This means that max{|g(t1, ·)|, |g(t2, ·)|}
is subcompact forg(t,θ ) = αt +exp(β t) as well.�

As soon as all experimental conditions are either negative or positive, then no
subcompactness is possible. With loss of generality, we canconsider only the case
where all experimental conditions are positive.

Theorem 5. If 0≤ t1 ≤ t2 ≤ . . . ≤ tN and g(t,θ ) = α + exp(β t) or g(t,θ ) = αt +
exp(β t) with θ = (α,β )⊤ ∈Θ = ℜ×ℜ then

max{|g(tn, ·)|; n = 1, . . . ,N}

is not subcompact. In particular, the fullness parameter of{ln(y,D, ·); n= 1, . . . ,N}
is N+1.

Proof. Setα = 0. Then exp(β tn) ≤C for all n = 1, . . . ,N is satisfies byβ ≤ ln(C)
tN

.

Hence

{0}×

(
−∞,

ln(C)

tN

)
⊂ {θ ; max{|g(tn, ·)|; n = 1, . . . ,N} ≤C}

so that max{|g(tn, ·)|; n = 1, . . . ,N} is not subcompact.�

Now define for any designD = (t1, . . . ,tN) ∈ ℜN

N+(D) := card{tn; tn > 0} and N−(D) := card{tn; tn < 0}.

Corollary 1. If g(t,θ ) = α +exp(β t) or g(t,θ ) = αt +exp(β t) with θ = (α,β )⊤ ∈
Θ = ℜ×ℜ andmin{N+(D),N−(D)}> 0 then the fullness parameter of{ln(y,D, ·);
n = 1, . . . ,N} is given by

max{N−N+(D)+1,N−N−(D)+1}.

Since the fullness parameter should be as small as possible to maximize the lower
bound for the breakdown point according to Theorem 1, a breakdown point maxi-
mizing design for the setup of Corollary 1 is a design withN+(D) = N−(D) = N

2 .
In this case, the lower bound for the breakdown point is approximately 1

4.
However, in most applications, a nonnegative design regionis assumed for a

model likeg(t,θ ) = α + exp(β t) or g(t,θ ) = αt + exp(β t). Then a fullness para-
meter less thanN+1 and thus a lower bound for the breakdown point greater than 0
is only achieved if the parameter space is restricted. This situation is studied in the
next section.
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4 Nonlinear models with restricted parameter space

Consideringg(t,θ ) = α +exp(β t) or g(t,θ ) = αt +exp(β t), it is enough to restrict
the parameter space ofβ .

Theorem 6. If 0≤ t1 < t2 and g(t,θ ) = α +exp(β t) or g(t,θ ) = αt +exp(β t) with
θ = (α,β )⊤ ∈Θ = ℜ× [b,∞) and b≥ 0 then

max{|g(t1, ·)|, |g(t2, ·)|}

is subcompact.

Proof. Consider at firstg(t,θ ) = αt +exp(β t) and let beC∈ [0,∞) arbitrary. Then

−C≤ αti +eβ ti ≤C for i = 1,2 (5)

impliesαti ≤C−eβ ti ≤C, αti ≥−C−eβ ti so thatα ≤ C
ti

and

α ≥
1
ti
(−C−eβ ti). (6)

(6) means−α ≤ 1
ti
(C+eβ ti ) so that with (5) we obtaineβ t j ≤C−αt j ≤C+ 1

ti
(C+

eβ ti )t j = C
(

1+ 1
ti

)
+

t j
ti

eβ ti . Dividing by eβ ti ≥ 1 (ti ≥ 0,β ≥ 0) yieldseβ (t j−ti) ≤

C
eβ ti

(
1+ 1

ti

)
+

t j
ti
≤ C

(
1+ 1

ti

)
+

t j
ti

so thatβ (t j − ti) ≤ ln
(
C

(
1+ 1

ti

)
+

t j
ti

)
. With

t j = t2, ti = t1 we obtainβ ≤ 1
t2−t1

ln
(
C

(
1+ 1

t1

)
+ t2

t1

)
=: K1 because oft2− t1 > 0.

Inequality (6) provides thenα ≥ 1
ti
(−C−eβ ti ) ≥ 1

ti
(−C−eK1ti ). Hence there exists

K2 ≥ 0 such that(α,β )⊤ ∈ [−K2,K2]× [b,K1].
The assertion forg(t,θ ) = α +exp(β t) follows similarly.�

Theorem 6 means that{ln(y,D, ·); n= 1, . . . ,N} is 2-full if 0 ≤ t1 < t2 < .. . < tN.
In this case the lower bound for the breakdown point is approximately N

2 which is
the maximum possible value for the lower bound. It is also obvious that repeated
observation at the same experimental condition would reduce the breakdown point
as Müller (1995) showed for linear models.

5 Discussion

Extension to nonlinear models with more than two parametersare possible and will
be published elsewhere. However, all these results concernonly the explosion point
and not the implosion point, where condition (2) would be necessary in the definition
of the breakdown point. In particular for restricted parameter spaces, the implosion
point is of interest, in particular when the bound is 0. But using the condition (2) in
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the definition of subcompactness, as Vandev (1993) and Vandev and Neykov (1998)
did, would not help. It seems that thed-fullness criterion is only useful for the
explosion point.
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