Designs with High Breakdown Point in
Nonlinear Models
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Abstract Least trimmed squares estimators are outlier robust siregertave a high
breakdown point because of trimming large residuals. Baibifleakdown point de-
pends also on the design. In generalized linear models anlihear models, the
connection between breakdown point and design is givendjullness parameter
defined by Vandev and Neykov (1998). As Miller and NeykowO@have shown,
this fullness parameter is given in generalized linear rsiolethe largest subdesign
where the interesting parameter is not identifiable. In plaiger, we show that this
connection does not hold for all nonlinear models. This rsehat the identifiabil-
ity at subdesigns cannot be used for finding designs whichigedigh breakdown
points. Instead of this, the fullness parameter itself nbestietermined. For some
nonlinear models with two parameters, the fullness paranetderived here. It is
shown that the fullness parameter and thus a lower bounthéprteakdown point
depends heavily on the design and the parameter space.

1 Introduction

We assume a nonlinear model given by
Yn = g(tna 9) + Zna

whereYi, ..., Yy are independent observatioras, ..., Zy are independent errors,
6 € © c 0" is an unknown parametdt, ...,ty € .7 C 0% are nonrandom exper-
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imental conditions, and : .7 x © — [0 is a known function which is nonlinear in
6. SetY = (Y1,...,Yn) " with realizationy = (yy,...,yn) " andletD = (tg,...,tn) "
be the design. The density ¥f is given by

f(yn,tn,0) = h((Yn—g(tnae))z) (2)

whereh is a monotone decreasing function which is known. Then tlgatiee log-
likelihood function given byiy(y,D, 8) = —log(f(yn, 8)) is @ monotone increasing
function of|yn — g(tn, 0)|.

__Here we will consider the breakdown point behavior of estora
6 : ON — O. The breakdown point of an estimatéris defined according to
Rousseeuw and Leroy (1987) by

£°(6,y) = %min{M;
there exists no compact S8 ¢ © with {8(y); Y€ Zu(y)} C G},

whereZy (y) == {y € ON; card{n; yn #,} <M} is the set of contaminated sam-
ples corrupted by at mo# observations. Often the conditi@y C O is replaced

by
G C int(O) (2)

to include also the implosion point for restricted paramsgaces. To facilitate the
task here, we will consider oni@y c ® which means that the breakdown point is
only an explosion point.

There are several approaches to high breakdown point éetisnfar nonlinear
models. See e.g. Stromberg and Ruppert (1992), Vandev 198Bata and White
(1995), Vandev and Neykov (1998). High breakdown pointneators are in par-
ticular obtained by trimming large residuals. See e.g. #astl trimmed squares
estimators in Rousseeuw and Leroy (1987), Prochazka [1888ureckova and
Prochazka (1994). However, in generalized linear modefmalinear models it is
more appropriate to trim the smallest likelihood functimrgthe largest negative
loglikelihood functions as Vandev (1993) and Hadi and lna€l997) proposed.

Trimming the least likely observations, i.e. the obsenvadi with the largest
In(y, 8), leads to trimmed likelihoods. Maximizing the trimmed likeod provides
the trimmed likelihood estimatdrLy(y) given by

h
T Lh(y> =arg nglnz |(n) (yv Dv 9);
n=1

whereN — h observations are trimmed ahg)(y,D,60) < ... <I)(y,D,6). Van-
dev (1993) and Vandev and Neykov (1998) studied the breakgmint behavior
of trimmed likelihood estimators and showed a relation leetwthe breakdown
point and the fullness paramet@mof {I,(y,D,-); n=1,...,N}. They defined the
d-fullness as follows.
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Definition 1. A finite set¥ = {yin : © — 0; n=1,...,N} of functions is called
d-full if for every {ns,...,ng} C {1,...,N} the functiony given by ¢(0) :=
max{(n, (0); k=1,...,d} is sub-compact. If{y(0) := max{yn(6); n=1,...,N}
is not subcompact, then the fullness parameté¥of {Y: © — O; n=1,... N}
is defined adN + 1.

Thereby a functiony : © — O is called sub-compact if the set
{6 €0O; Y(6) <C}is contained in a compact s8¢ C O forallC € 0.

Again we use here for simplicitdc C © instead of@c C int(®) in the the
original definition of Vandev and Neykov.

The relation between breakdown point ashfullness was worked out in more
detail by Muller and Neykov (2003). In particular they shemhthe following theo-
rem.

Theorem 1.Assume thafln(y,D,-); n = 1,...,N} is d-full and |M4] < h <
| ML | Then the breakdown point of a trimmed likelihood estimatoy satisfies

1|N—-d+2

“(TL > — | — .
e(TLhy) = { > J
Theorem 1 means in particular that the fullness parandetbould be as small as
possible to achieve a high breakdown point. Muller and N&yR003) also proved
that the fullness parameter f,(y,-); n=1,...,N} in linear models and in many
generalized linear models satisfiats- .4 (D) + 1 where the so called identifiability

parameter
(D)

N
= max{ Z 15(th); 2 C {t1,...,tn} where@ is not identifiable a@}
n=1

was introduced by Muller (1995). In linear models and gatieed linear models,
whereg(tn, 8) = x(tn) " 8 is satisfied, we have that

_ . T
N (D) = ogggépcard{n e{L...,N}; x(tn) "0 = o},

so that.#"(D) provides the maximum number of explanatory variables lying
subspace. This means in particular for linear and genedilinear models that
d = .4 (D) + 1 is the smallest number so that every subset of the desi¢mnthg
number of points provides identifiability &f.

Although Theorem 1 holds also for nonlinear models and iflahtility can be
defined also for nonlinear models, there is no simple reidiEtween identifiability
and the fullness parametémvhich holds for all nonlinear models. This is shown in
Section 2. Section 3 and Section 4 treat the determinatitimeofuliness parameter
for two special nonlinear models with two parameters. Thgraonlinear models
with unrestricted parameter space are considered in $tend nonlinear models
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with restricted parameter space are studied in Sectiorigsltown that the fullness
parameter and thus the lower bound for the breakdown popertt#s heavily on the
design and the parameter space. In Section 5, extensidms ifqults are discussed.

2 Identifiability and d fullness

If the density satisfies (1), then the monotonyhadnd the logarithm implies with
the triangle inequality

max{ln (y,D,0); k=1,...,d}
= max{—log(h (( —g(tn,,0))?); k=1,...,d} <C
<= max{|g(ty,0)]; k=1,...,d} <Cp,

where the constan@, C;, andC; are independent &, but depend og. Hence the
following theorem holds.

Theorem 2.
{ln(y,D,-); n=1,...,N} isd-full< {|g(tn,0); n=1,...,N} isd-full
Identifiability in nonlinear models is defined as follows.
Definition 2. 8 is identifiable aD with respect tqy if and only if
O(tn, ) =g(tn,B) foralln=1,.... N = 6=120
forall 6, 6eo.

Identifiability in nonlinear models with more than two unkwoparameters is of-
ten difficult to verify. Therefore, only a simple nonlineaodel is regarded, namely
g(t,0) = a -exp(Bt). Then the following result holds.

Theorem 3 If g(t,0) = a -exp(Bt) with 6 = (a,B)" € © = [a,) x [b,) and
O<ax exp(bt) and D=t with t > 0 then we have

e 0O is notidentifiable at D,
e |g(t, )| is subcompact and thus; (y,D,-)} is 1-full.

Theorem 3 means for all desigis= (ty,...,tn) € ON with t, # 0 for n =
1,...,N that the fullness parameterof {I,(y,D,-); n=1,...,N} is 1 while the
identifiability parameter satisfied” (D) > 1. Henced = .4 (D) + 1, which holds in
linear and many generalized models, is not satisfied.

Proof of Theorem 3.Sincea < exp(bt) there exist®r, 0 witha< o < & < exp(bt)
SetB=In(3)1 andf = In ()1 Then we haves, 8 > In (exp(bt)) £ £ =band
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g(t,(a,8)) =aexp(in (L) it) =1=daexp(In (%) 1t) =g(t,(&,B)), so thatd =
(a,B)" is not identifiable aD =t. Furthermore| (t,( ))| =a-exp(ft) < C
impliesa< a < < and expgpt) < S so that = (a,B)"

ex| p(Bt) - exp(bt)

¢
: <<
{a, exp(bt} [b,%-In(£)] which is a compact set.

Hené& (y,D, )} is 1-full. O

Arestricted parameter space li@e= [a, «) x [b, ) used in Theorem 3 is typical
for nonlinear models based on exponential functions witthtbreakdown point.
This is discussed in more detail in the following two secsion

3 Nonlinear models with unrestricted parameter space

In this section, nonlinear models based on the exponenitigtion with two para-
meters are studied. If the design consists of one negati/e@ positive value then
no restriction of the parameter space is necessary.

Theorem 4.1ft; <0<ty and gt,0) = a +exp(ft) or g(t,8) = at +exp(Bt) with
0= (a,B)" €©=0x0then

max{|g(tz,-)[,9(t2, )[}
is subcompact.

Proof. Consider at firsig(t,8) = a + exp(Bt) and let beC > 0 arbitrary. Then
max{|g(t1,0)[,]9(t2,0)|} < C implies —C < a +exp(Btj)) < C for i = 1,2 so
that —C — exp(Btj) < a < C—exp(Bt;) < C for i =12 Sincet; <0< ty, it
holds Bt; < 0 or Bt < 0 for any 8 so thata > —C — exp(0) = —C — 1. Hence
e[-C-1.C].
Moreover, expfti) <C—a <2C+1 for i =1,2 sothat <In(2C+1) for i=

1,2 which impliesp € ['” ZCH), '”ﬁ?’”} . Hence max|g(ty,-)|,|9(tz,-)|} is sub-

compact forg(t,0) = a +exp(Bt).
Now considelg(t, 8) = at + exp(Bt). Again, let beC > 0 arbitrary. Then

ati+ e <C fori=1,2 (3)

impliesat; <C—ePfli <C for i = 1,2 so thata > ?, a< ‘; Hence there exists
k>0 with —k < a < k. With thisk we obtain—kt; > at; > kt;, and—kt, < at, <kt
so that

ktp < —aty < —kt;, ktp > —aty, > —kt,. 4)

Inequality (3) also impliegfi < C — at; for i = 1,2. With (4) we obtaine®s <
C—at; <C—kt; andeP2 < C— at, < C+ktp so thatBt; < In(C—kty), Bty <
In(C+ktp) and > In C ktl , B< Ing Ct;rkt”. Hence, there existe > 0 with —k' <
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B <K sothat(a,B)" € [~k k] x [-K,K]. This means that maxg(ts, )|, |g(tz,-)|}
is subcompact fog(t, 8) = at + exp(Bt) as welld

As soon as all experimental conditions are either negatiygositive, then no
subcompactness is possible. With loss of generality, wecoasider only the case
where all experimental conditions are positive.

Theorem5.1f 0 <t; <t, <... <ty and dt,0) = o +exp(ft) or g(t,0) = at +
exp(Bt) with 6 = (a,B)" € © =0 x O then

max{|g(tn,-)|; n=1,...,N}

is not subcompact. In particular, the fullness parametefipfy,D,-); n=1,...,N}
is N+ 1.

E'roof. Seta = 0. Then exppty) <C forall n=1,...,N is satisfies by3 < (<.
ence

{0} x (—oo,lnt(—c)) c {6; max{|g(tn,-)|; n=1,...,N} <C}
N

so that max|g(tn,-)|; n=1,...,N} is not subcompadil
Now define for any desigb = (ty,...,ty) € ON
N (D) := card{tn; t, > 0} and N~ (D) := card{tp; tn < 0}.

Corollary 1. If g(t,0) = a +exp(Bt) or g(t, 8) = at +exp(Bt) with 6 = (a,B) "
©=0x0andmin{N*(D),N™ (D)} > Othen the fullness parameter fif,(y, D, );
n=1,...,N}is given by

max{N—-N"(D)+1,N—-N" (D) +1}.

Since the fullness parameter should be as small as possiblatimize the lower
bound for the breakdown point according to Theorem 1, a @&k point maxi-
mizing design for the setup of Corollary 1 is a design with(D) = N~ (D) = %

In this case, the lower bound for the breakdown point is aqdmately%,r.

However, in most applications, a nonnegative design regicassumed for a
model likeg(t,0) = a + exp(Bt) or g(t,0) = at +exp(Bt). Then a fullness para-
meter less thaN + 1 and thus a lower bound for the breakdown point greater than O
is only achieved if the parameter space is restricted. Thiatton is studied in the
next section.
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4 Nonlinear models with restricted parameter space

Considering(t, 8) = a +exp(Bt) org(t, ) = at +exp(Bt), it is enough to restrict
the parameter space Bf

Theorem 6.1f 0 <t; <tp and gt, 8) = a +exp(ft) or g(t, 8) = at +exp(Bt) with
0= (a,B)" € =0 x[b,»)and b>0then

maX{|g(tla )|a |g(t27 >|}
is subcompact.

Proof. Consider at firsg(t, 8) = at + exp(Bt) and let beC € [0, ) arbitrary. Then
—C<atj+efi<Cfori=1,2 (5)

impliesat; <C—efli <C, at; > —C— &P so thata < % and

F-*n—\

(-C- &Pl (6)

(6) means-a < #(C+€") so that with (5) we obtaie®i <C—atj <C+ (C+
efiyy; =C (1+ %) + tt_;'eﬁti. Dividing by €fi > 1 (t > 0,8 > 0) yieldsefli—t) <
S (1) +2 gc(1+t—})+“ so thatB(t —t) <In(C(1+#)+ ). With
tj =to, i =t; we obtain8 < - In (C <1+ ) + tz) =: Ky because of, —t; > 0.
> 1
—t

ty
Inequality (6) provides thea 2 ﬁ(— —ePli) > L(—C— €4t). Hence there exists

Ko > 0suchthata,B)" € [-Kp, Ko] x [b,Ky].
The assertion fog(t, 8) = a + exp(Bt) follows similarlyJ

Theorem 6 means thél,(y,D,-); n=1,...,N}is 2-fullif 0 <ty <tr < ... <tn.
In this case the lower bound for the breakdown point is ap’mately% which is
the maximum possible value for the lower bound. It is alsoioby that repeated
observation at the same experimental condition would redue breakdown point
as Miller (1995) showed for linear models.

5 Discussion

Extension to nonlinear models with more than two parameterpossible and will
be published elsewhere. However, all these results commedyrihe explosion point
and not the implosion point, where condition (2) would beassary in the definition
of the breakdown point. In particular for restricted paréganspaces, the implosion
point is of interest, in particular when the bound is 0. Buhgghe condition (2) in
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the definition of subcompactness, as Vandev (1993) and VaartttNeykov (1998)
did, would not help. It seems that tlkfullness criterion is only useful for the
explosion point.
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