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Abstract General upper and lower bounds for the finite sample breakdown point
are presented. The general upper bound is obtained by an approach of Davies and
Gather (2005) using algebraic groups of transformations. It is shown that the upper
bound for the finite sample breakdown point has a more simple form than for the
population breakdown point. This result is applied to multivariate regression. It is
shown that the upper bounds of the breakdown points of estimators of regression
parameters, location and scatter can be obtained with the same group of transforma-
tions. The general lower bound for the breakdown point of some estimators is given
via the concept ofd-fullness introduced by Vandev (1993). This provides that the
lower bound and the upper bound can coincide for least trimmed squares estima-
tors for multivariate regression and simultaneous estimation of scale and regression
parameter.

1 Introduction

The breakdown point of an estimator introduced by Hampel (1971) is a simple and
successful measure of the robustness of an estimator against changes of the ob-
servations. In particular, it is easy to understand the finite sample version of the
breakdown point. Estimators with a high breakdown point areinsensitive to a high
amount of outlying observations. Moreover, they can be usedto detect observations
which do not follow the majority of the data. Some estimatorshave a breakdown of
50% while in other situations the highest possible breakdown point is much smaller
than 50%. Therefore it is always important to know what is thehighest possible
breakdown point. Then it can be checked whether specific estimators can reach this
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upper bound. This can be done by deriving lower bounds for these estimators. Here
general upper and lower bounds for the breakdown point are discussed.

Two finite sample breakdown point concepts are given in Section 2. In Section 3,
a general upper bound is derived via the approach based on algebraic groups of
transformations introduced by Davies and Gather (2005). While Davies and Gather
(2005) developed this approach for the population version of the breakdown point,
here this approach is transfered to the finite sample versionof the breakdown point.
This leads to a very simple characterization of the upper bound. Davies and Gather
(2005) applied the approach to multivariate location and scatter estimation, univari-
ate linear regression, logistic regression, the Michaelis-Menten model, and time se-
ries using different groups of transformations for each case. Regarding multivariate
regression in Section 4, linear regression as well as multivariate location and scatter
estimation can be treated here with the same approach. In particular the same group
of transformations is used for the three cases. In Section 5,a general lower bound
for the breakdown of some estimators based on the approach ofd-fullness devel-
oped by Vandev (1993) is presented. With this approach, Müller and Neykov (2003)
derived lower bounds for generalized linear models like logistic regression and log-
linear models and Müller and Schäfer (2010) obtained lower bounds for some non-
linear models. This approach is used here in Section 6 to provide lower bounds for
multivariate regression and simultaneous estimation of the scale and regression pa-
rameter in univariate regression. It is shown in particularthat least trimmed squares
estimators are attaining the upper bounds derived in Section 4.

2 Definitions of Breakdown Points

Let beΘ a finite dimensional parameter space,z1, . . . ,zN ∈ Z a univariate or mul-
tivariate sample inZ , andθ̂ : Z N −→Θ an estimator forθ ∈Θ . If int(Θ) denotes
the interior of the parameter space, then a general definition of the finite sample
breakdown is as follows, see e.g. Hampel et al. (1986), p. 97:

Definition 1. The breakdown point of an estimatorθ̂ : Z N →Θ atZ =(z1, . . . ,zN)
⊤

∈ Z N is defined as

ε∗(θ̂ ,Z) :=
1
N

min{M;

there exists no compact setΘ0 ⊂ int(Θ) with {θ̂(Z); Z ∈ ZM(Z)} ⊂Θ0
}
,

where

ZM(Z) :=
{

Z ∈ Z
N; card{n; zn ∕= zn} ≤ M

}

is the set of contaminated samples corrupted by at mostM observations.
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Often the definition via compact subsets is replaced by a definition via explosion
with respect to a special pseudometricd onΘ , see e.g. Donoho and Huber (1983),
Davies and Gather (2005).

Definition 2.

ε∗(θ̂ ,Z,d) :=
1
N

min

{
M; sup

Z∈ZM(Z)
d(θ̂ (Z), θ̂ (Z)) = ∞

}
.

Is Θ = IRp, then the pseudometric can be chosen as the Euclidean metric∥ ⋅ ∥p.
Is Θ = [0,∞)⊂ IR, for example for scale parameters, then an appropriate choice for
the pseudometric isd(θ1,θ2) = ∣ log(θ1 ⋅θ−1

2 )∣, see Davies and Gather (2005). This
is again a metric but its extension to scatter matrices is only a pseudometric, as is
discussed in Section 4.2.

Davies and Gather (2005) used the population version of the breakdown point
and not the finite sample version of Definition 2. But they pointed out that the finite
sample version is obtained by using the empirical distribution. They provided a
general upper bound for the population version of Definition2 using transformation
groups on the sample spaceZ . Here this approach is given at once in the sample
version.

3 A General Upper Bound

For the breakdown point of Definition 2, a general upper boundcan be derived if
the estimator̂θ is equivariant with respect to measurable transformationsgiven by
a group

G := {g; g : Z −→ Z }.

Recall thatG is a group in algebraic sense with actions∘ and unit elementι if and
only if

∙ g1∘g2 ∈ G for all g1, g2 ∈ G ,

∙ ι ∘g= g= g∘ ι for all g∈ G ,

∙ for everyg∈ G there existsg−1 with g∘g−1 = ι = g−1∘g.

Definition 3. An estimator̂θ : Z N →Θ is called equivariant with respect to a group
G if there exists a groupHG = {hg; g∈ G } of transformationshg : Θ −→ Θ such
that for everyg∈ G there existshg ∈ HG with

θ̂ ((g(z1), . . . ,g(zn))
⊤) = hg(θ̂ ((z1, . . . ,zn)

⊤))

for all samplesZ = (z1, . . . ,zn)
⊤ ∈ Z N.
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To derive the upper bound for the breakdown point, the following subset ofG is
needed

G1 := {g∈ G ; lim
k→∞

inf
θ∈Θ

d(θ ,hgk(θ )) = ∞}.

If G1 = /0, then the groupG is too small to produce transformed parameters arbitrar-
ily far away from the original parameter.

Theorem 1. If the estimator̂θ : Z N →Θ is equivariant with respect toG andG1 ∕=
/0, then

ε∗(θ̂ ,Z,d)≤ 1
N

⌊
N−∆(Z)+1

2

⌋

for all Z ∈ Z N, where

∆((z1, . . . ,zN)
⊤) := max{card{n; g(zn) = zn}; g∈ G1}

and⌊x⌋ is the largest integer m with m≤ x.

Note the more simple form of the quantity∆(Z) compared with its form in the
population version given by Davies and Gather (2005).

Proof. Regard an arbitrary observation vectorZ. Let beM =
⌊

N−∆ (Z)+1
2

⌋
andL =

∆(Z). Then there existsg ∈ G1 so that without loss of generalityg(zn) = zn for
n = 1, . . . ,L. Then we also havegk(zn) = gk−1(zn) = . . . = g2(zn) = g∘ g(zn) =

g(g(zn)) = g(zn) = zn for all n= 1, . . . ,L and all integerk. DefineZ̃k
andZ

k
for any

integerk by

z̃k
n = zn for n= 1, . . . ,L andL+M+1, . . . ,N,

z̃k
n = gk(zn) for n= L+1, . . . ,L+M,

and

zk
n = zn for n= 1, . . . ,L+M,

zk
n = g−k(zn) for n= L+M+1, . . . ,N.

Obviously,Z̃
k ∈ ZM(Z). SinceN− (L+M) = N−L−

⌊
N−L+1

2

⌋
≤ N−L− N−L

2 =
N−L

2 ≤
⌊

N−L+1
2

⌋
, we also haveZ

k ∈ ZM(Z). Moreover, it holds

gk(zk
n) = gk(zn) = zn = z̃k

n for n= 1, . . . ,L,

gk(zk
n) = gk(zn) = z̃k

n for n= L+1, . . . ,L+M,

gk(zk
n) = gk(g−k(zn)) = gk∘g−k(zn) = zn = z̃k

n for n= L+M+1, . . . ,N.

Sinceg∈ G1 andθ̂ ((gk(zk
1), . . . ,g

k(zk
n))

⊤) = hgk(θ̂ ((zk
1, . . . ,z

k
N)

⊤)), we obtain
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lim
k→∞

d(θ̂ (Z̃k
), θ̂ (Zk

))

= lim
k→∞

d(θ̂ ((gk(zk
1), . . . ,g

k(zk
n))

⊤), θ̂ (Zk
)) = lim

k→∞
d(hgk(θ̂ (Zk

)), θ̂ (Zk
)) = ∞.

Because ofd(θ̂ (Z̃k
), θ̂ (Zk

)) ≤ d(θ̂ (Z̃k
), θ̂ (Z)) + d(θ̂ (Z), θ̂ (Zk

)), at least one of

d(θ̂ (Z̃k
), θ̂ (Z)) andd(θ̂(Z), θ̂ (Zk

)) must converge to∞ for k−→ ∞ as well. ⊓⊔

4 Example: Multivariate Regression

The multivariate regression model is given by

y⊤n = x⊤n B+e⊤n ,

where yn ∈ IRp is the observation vector,xn ∈ IRr the known regression vec-
tor, B ∈ IRr×p the unknown parameter matrix anden ∈ IRp the error vector. Set
z= (x⊤,y⊤)⊤ ∈ Z = IRr+p and assume thate1, . . . ,eN are realizations of i.i.d. ran-
dom variablesE1, . . . ,EN with location parameter0p and scatter matrixΣ , where0p

denotes thep-dimensional vector of zeros. The interesting aspect ofB shall be the
linear aspectΛ = LB with L ∈ IRs×r . We consider here the problem of estimating
Λ in Section 4.1 and of estimatingΣ in Section 4.2.

In both cases, we can use the following group of transformations

G = {gA,B : Z → Z ; A ∈ IRp×p is regular, B ∈ IRr×p}

with gA,B((x⊤,y⊤)⊤) = (x⊤,y⊤A + x⊤B)⊤. The unit element of this group isι =
gI p,0r×p, where0r×p is ther × p-dimensional zero matrix andI p the p-dimensional
identity matrix. The inverse ofgA,B is given bygA−1,−BA−1.

4.1 Estimation of a linear aspect of the regression parameters

An estimator̂θ = Λ̂ : Z N → IRs×p for θ =Λ = LB ∈ IRs×p should be scatter equiv-
ariant and translation equivariant, i.e. it should satisfy

Λ̂((gA,B(z1), . . . ,gA,B(zn))
⊤) = hgA,B(Λ̂ (Z))

with hgA,B(Λ) = Λ A+LB for all gA,B ∈ G . With G , also

HG = {hgA,B : IRs×p → IRs×p; A ∈ IRp×p is regular, B ∈ IRr×p}

is a group of transformations.
If LB = 0s×p, thenΛ = 0s×p satisfies
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d(Λ ,hgn
A,B

(Λ)) = d(0s×p,0s×pAn) = d(0s×p,0s×p) = 0

for any pseudometricd on IRs×p. HenceLB ∕= 0s×p is necessary forgA,B ∈ G1.
Moreover, we haveΛ = hgA,B(Λ) = Λ A + LB if and only if LB = Λ (I p−A) so
that

G1 = {gA,B ∈ G ; LB ∕= 0s×p andLB ∕= Λ (I p−A) for all Λ ∈ IRs×p}.

SetX = (x1, . . . ,xN)
⊤. Now we are going to show that∆(Z) is the maximum num-

ber of regressorsxn so that the univariate linear aspectLβ with β ∈ IRr is not identifi-
able at these regressors, i.e.∆(Z) is the nonidentifiability parameterNλ (X) defined
in Müller (1995) for univariate regression, see also Müller (1997).

Definition 4. Lβ is identifiable atD = {xn1, . . . ,xnI } if and only if for all β ∈ IRr

x⊤ni
β = 0 for i = 1, . . . , I impliesLβ = 0.

If XD = (xn1, . . . ,xnI )
⊤, then it is well known thatLβ is identifiable atD =

{xn1, . . . ,xnI } if and only if L = KX D for someK ∈ IRs×I , see e.g. Müller (1997),
p. 6.

Definition 5. The nonidentifiability parameterNλ (X) for estimatingλ = L β in
univariate regression, i.e.β ∈ IRr , is defined as

Nλ (X) := max{card{n; x⊤n β = 0}; β ∈ IRr with λ = Lβ ∕= 0}
= max{cardD; λ = Lβ is not identifiable atD}.

Theorem 2.

∆(Z) = Nλ (X).

Proof. Let begA,B ∈G1 and assume that there existszn1, . . . ,znI with gA,B(zni ) = zni

for i = 1, . . . , I .
If A = I p, then it holdsgA,B(z) = z= (x⊤,y⊤)⊤ if and only if x⊤B= 01×p so that

∆(Z)≥max{card{n; x⊤n β = 0}; β ∈ IRp with Lβ ∕= 0} sinceLB ∕= 0 for gA,B ∈ G1.
In this case,LB ∕= Λ (I p×p−A) is always satisfied for allΛ ∈ IRs×p so that it is no
restriction.

Now considerA ∕= I p. Assume thatLβ is identifiable atD = {xn1, . . . ,xnI } with
I = ∆(Z). Then there existsK ∈ IRs×I such thatL = KX D. SetYD = (yn1, . . . ,ynI )

⊤.
SincegA,B(zni ) = zni if and only if x⊤ni

B = y⊤ni
(Ip −A), we obtain the contradiction

LB = KX DB = K

⎛
⎜⎝

x⊤n1
B

...
x⊤nI

B

⎞
⎟⎠= K

⎛
⎜⎝

y⊤n1
(I p−A)

...
y⊤nI

(I p−A)

⎞
⎟⎠= KY D (I p−A)

sincegA,B ∈ G1. This means thatLβ cannot be identifiable atD = {xn1, . . . ,xnI } so
that∆(Z) = I ≤ max{card{n; x⊤n β = 0}; β ∈ IRp with Lβ ∕= 0}. ⊓⊔
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From the proof of Theorem 2 it is clear that the assertion of Theorem 2 holds
also without using the scatter equivariance of the estimator Λ̂ . See also Sections
4.1.1 and 4.1.2.

4.1.1 Location model

A special case of multivariate regression is multivariate location withxn = 1 for all
n= 1, . . . ,N, whereB∈ IR1×p is the parameter of interest. In this case, identifiability
holds always so that∆(Z) = 0. Hence we have the highest possible upper point of
1
N

⌊
N+1

2

⌋
. This result was obtained by Davies and Gather (2005) using only the

translation group

G
L = {gI p,B : Z → Z ; B ∈ IR1×p}

so that
G

L
1 = {gI p,B ∈ G

L; B ∕= 01×p}.

They wrote in their rejoinder thatG L
1 would be empty if scatter transformations are

considered as well. ButG L
1 becomes larger if a larger group of transformation is

regarded.
For the special case of univariate data, i.e.p= 1, with location parameterµ ∈ IR,

the condition

0s×p ∕= LB ∕= Λ (I p−A) for all Λ ∈ IR1×p (1)

becomes

0 ∕= b ∕= µ(1−a) for all µ ∈ IR, (2)

wherea,b∈ IR replaceA andB. Since condition (2) is only satisfied fora= 1 we
have

G
L
1 = G1

so that indeed it does not matter if the scatter (here scale) equivariance is additionally
demanded.

For univariate data the upper bound1
N

⌊
N+1

2

⌋
is attained by the median. A mul-

tivariate extension of the median, which is scatter and translation equivariant, is
Tukey’s half space median. But its breakdown point lies onlybetween 1

p+1 and 1
3,

see Donoho and Gasko (1992). As far as the author knows, thereis no scatter and
translation equivariant location estimator which attainsthe upper bound forp> 1.

4.1.2 Univariate regression

Another special case of multivariate regression is univariate regression withp= 1,
where the unknown parameterB is β ∈ IRr . The result
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∆(Z) = Nλ (X)

was obtained by Müller (1995) using only the transformations gb((x⊤,y)⊤) =
(x⊤,y+ x⊤b)⊤ in a proof similar to that of Theorem 1, see also Müller (1997).

The special caseLβ = β was considered by Davies (1993) who derived the upper
bound for the population version of the breakdown point. Davies and Gather (2005)
provided this result as an example of the approach via groups.

Using the translation group

G
R = {gb : Z → Z ; b ∈ IRr}

with gb((x⊤,y)⊤) = (x⊤,y+ x⊤b)⊤, as Davies and Gather (2005) did, leads to

G
R
1 = {gb ∈ G

R; b ∕= 0r}.

But since condition (1) becomes here

0r ∕= b ∕= β (1−a) for all β ∈ IRr
,

with b ∈ IRr anda∈ IR, it is again only satisfied fora= 1 so that

G
R
1 = G1.

Hence as for location estimation, the restriction to translations is no real restriction
here.

4.2 Scatter estimation

An estimatorθ̂ = Σ̂ : Z
N → S of the scatter matrixΣ ∈ S = {A ∈ IRp×p; A

is symmetric and positive definite}, should be scatter equivariant and translation
invariant, i.e. it should satisfy

Σ̂((gA,B(z1), . . . ,gA,B(zn))
⊤) = hgA,B(Σ̂ (Z))

with hgA,B(Σ) = A Σ A⊤ for all gA,B ∈ G . With G , also

HG = {hgA,B = hA : S → S ; A ∈ IRp×p is regular}

is a group of transformations. An appropriate pseudometriconS is given by

d(Σ1,Σ2) := ∣ log(det(Σ1 Σ−1
2 ))∣.

It holdsd(Σ1,Σ2) = 0 if and only if det(Σ1 Σ−1
2 ) = 1. This is not only satisfied by

Σ1 =Σ2, since e.g. diagonal matrices like diag(1,1) and diag(1
2,2) are satisfying this

as well. Henced is not a metric. But it is a pseudometric because it is always greater
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than 0 and it satisfies the triangle inequality. Since det(AΣ1A⊤ Σ−1
2 ) = det(Σ1 Σ−1

2 )
as soon as det(A) = 1, G1 is given by

G1 = {gA,B ∈ G ; det(A) ∕= 1}.

SincegA,B(z) = z if and only if x⊤B= y⊤(I p−A), we have at once the following
theorem.

Theorem 3.

∆(Z) = max{card{n; x⊤n B = y⊤n (I p−A)};

B ∈ IRr×p
, A ∈ IRp×p is regular with det(A) ∕= 1}.

4.2.1 Location model

In the special case of multivariate location withxn = 1 for all n = 1, . . . ,N and
B ∈ IR1×p we havegA,B(z) = z if and only if B = y⊤(I p−A). Hence{y ∈ IRp; B =
y⊤(I p − A)} is a hyperplane inIRp. Conversely, if{y ∈ IRp; c⊤ = y⊤C} is an
arbitrary hyperplane inIRp, then it can be assumed that det(I p −C) ∕= 1 so that
gI p−C,c⊤ ∈G1. This implies that∆(Z) is the maximum number of observations lying
in a hyperplane. According to Theorem 1, the upper bound of the breakdown point
of an equivariant scatter estimator is given by the maximum number of observations
in a hyperplane. It attains its highest value for observations in general position. But
sincep points are lying in the hyperplane ofIRp spanned by these points, an upper

bound for the breakdown point is always1
N

⌊
N−p+1

2

⌋
. The population version of this

result was originally given by Davies (1993) and derived by group equivariance in
Davies and Gather (2005).

For the one-dimensional case (p= 1), it means that the upper bound of the break-
down point of a scale equivariant and translation invariantscale estimator is deter-
mined by the maximum number of repeated observations. Here the highest value
of the upper bound is given by pairwise different observations. This highest upper
bound is for example attained by the median absolute deviation (MAD). However,
it can happen that the upper bound is not attained by the median absolute deviation
if observations are repeated. Davies and Gather (2007) gavethe following example

1.0, 1.8, 1.3, 1.3, 1.9, 1.1, 1.3, 1.6, 1.7, 1.3, 1.3.

The median absolute deviation of this sample is 0.2. But as soon as one observation
unequal to 1.3 is replaced by 1.3, the median absolute deviation is 0. Hence the
breakdown point of this sample is111. However, since 1.3 is repeated five times, the
upper bound for the breakdown point is

1
11

⌊
11−5+1

2

⌋
=

3
11

.
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4.2.2 Univariate regression

In the special case of univariate regression withp= 1, the condition

x⊤B = y⊤(I p−A)

becomes
x⊤β = y(1−a)⇐⇒ y= x⊤β̃

with β ∈ IRr , 1 ∕= a ∈ IR and β̃ = 1
1−aβ . This means that∆(Z) is the maximum

numberE (X) of observations satisfying an exact fit.

Definition 6. The exact fit parameter is defined as

E (X) := max{card{n; yn = x⊤n β}; β ∈ IRp}.

Hence we have here
∆(Z) = E (X).

5 A general lower bound for some estimators

Since there are always estimators with a breakdown point of1
N or even 0, a lower

bound can be only valid for some special estimators. He we consider estimators of
the form

θ̂(Z) := argmin
θ∈Θ

s(Z,θ )

with s : Z N ×Θ → IR, wheres(Z,θ ) can be bounded from below and above by
some quality functionsq : Z ×Θ → IR. These quality functions can be residuals
but also some negative loglikelihood functions as considered in Müller and Neykov
(2003). Setqn(Z,θ ) = q(zn,θ ) for n= 1, . . . ,N andq(1)(Z,θ ) ≤ . . . ≤ q(N)(Z,θ ).
Then there shall existsα, β ∈ IR with α ∕= 0 andh∈ {1, . . . ,N} such that

α q(h)(Z,θ )≤ s(Z,θ )≤ β q(h)(Z,θ ) (3)

for all Z ∈ Z N andθ ∈Θ . In particular,h-trimmed estimators given by

θ̂h(Z) := argmin
θ∈Θ

h

∑
n=1

q(n)(Z,θ )

are satisfying condition (3). But also S-estimators are satisfying this condition, see
e.g. Rousseeuw and Leroy (2003), pp. 135-139.

For deriving the lower bound for the breakdown point, the Definition 1 for the
breakdown point is used. This definition is checking whetherthe estimators are
remaining in a compact subset of the parameter space. Via compact sets, Vandev
(1993) developed the concept ofd-fullness which was used by Vandev and Neykov
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(1998) to estimate this breakdown point for trimmed estimators. A modification of
this concept, used in Müller and Neykov (2003), bases on thefollowing definitions.

Definition 7. A function γ : Θ → IR is called sub-compact if the set
{θ ∈Θ ; γ(θ )≤ c} is contained in a compact setΘc ⊂ int(Θ) for all c∈ IR.

Definition 8. A finite setΓ = {γn : Θ → IR; n= 1, . . . ,N} of functions is calledd-
full if for every {n1, . . . ,nd} ⊂ {1, . . . ,N} the function γ given by
γ(θ ) := max{γnk(θ ); k= 1, . . . ,d} is sub-compact.

At first note the following lemma of Müller and Neykov (2003).

Lemma 1. If {qn(Z, ⋅); n = 1, . . . ,N} is d-full, M ≤ N− h, and M≤ h− d, then
q(d)(Z,θ )≤ q(h)(Z,θ )≤ q(N)(Z,θ ) for all Z ∈ YM(Z) andθ ∈Θ .

Proof. Regardn1, . . . ,nh with q(k)(Z,θ ) = qnk(Z,θ ) for k= 1, . . . ,h. Sinceh≥M+

d we have 1≤ k(1)< .. . < k(d)≤ h with qnk(i)
(Z,θ ) = qnk(i)

(Z,θ ). Then we obtain

q(h)(Z,θ ) = qnh(Z,θ )≥ qnk(d)
(Z,θ )≥ qnk(i)

(Z,θ ) = qnk(i)
(Z,θ )

for all i = 1, . . . ,d. This impliesq(h)(Z,θ )≥ q(d)(Z,θ ). The other inequality follows
similarly. ⊓⊔

Theorem 4 (Müller and Neykov (2003)).If the estimator̂θ satisfies condition (3)
and{qn(Z, ⋅); n= 1, . . . ,N} is d-full, then

ε∗(θ̂ ,Z)≥ 1
N

min{N−h+1,h−d+1}.

Proof. Let M = min{N−h,h−d}. Lemma 1 together with assumption (3) provide
that

α q(d)(Z,θ )≤ s(Z,θ )≤ β q(N)(Z,θ )

for all Z ∈ ZM(Z) andθ ∈Θ . This means

α q(d)(Z, θ̂ (Z))≤ s(Z, θ̂ (Z)) = min
θ

s(Z,θ )≤ β min
θ

q(N)(Z,θ )

for all Z ∈ZM(Z). Settingc0 := β
α minθ q(N)(Z,θ ) we have{θ̂(Z); Z ∈ZM(Z)}⊂

{θ ∈Θ ; q(d)(Z,θ )≤ c0} so that we have only to show thatγ given by

γ(θ ) := q(d)(Z,θ ) = max{q(1)(Z,θ ), . . . ,q(d)(Z,θ )}
= max{qn1(θ)(Z,θ ), . . . ,qnd(θ)(Z,θ )}

is sub-compact. Assume that this is not the case. Then there exists c ∈ IR such
that {θ ; γ(θ ) ≤ c} is not contained in a compact set. Hence, there exists a se-
quence(θm)m∈IN ∈ {θ ; γ(θ ) ≤ c} such that every subsequence of(θm)m∈IN is not



12 Christine Müller

converging. Because of{n1(θm), . . . ,nd(θm)} ⊂ {1, . . . ,N} we have a subsequence
(θm(k))k∈IN andn1, . . . ,nd such that{n1(θm(k)), . . . ,nd(θm(k))}= {n1, . . . ,nd} for all
k ∈ IN. This impliesγ(θm(k)) = max{qn1(Z,θm(k)), . . . ,qnd(Z,θm(k))} ≤ c for all
k ∈ IN. However, max{qn1(Z, ⋅), . . . ,qnd(Z, ⋅)} is sub-compact since
{q1(Z, ⋅), . . . ,qN(Z, ⋅)} is d-full. This provides that(θm(k))k∈IN contains a conver-
gent subsequence which is a contradiction. Henceγ is sub-compact. ⊓⊔

The lower bound of Theorem 4 is maximized if the trimming factor h satisfies⌊
N+d

2

⌋
≤ h ≤

⌊
N+d+1

2

⌋
. A simple consequence of this fact is the following result

concerning trimmed estimators.

Theorem 5.Assume that{qn(Z, ⋅); n= 1, . . . ,N} is d-full and
⌊

N+d
2

⌋
≤ h≤

⌊
N+d+1

2

⌋
.

Then the breakdown point of any trimmed estimatorθ̂h satisfies

ε∗(θ̂h,Z)≥
1
N

⌊
N−d+2

2

⌋
.

6 Example: Regression

6.1 Multivariate regression

Consider again multivariate regression withx ∈ IRr , y ∈ IRp and unknown matrix
B ∈ IRr×p of regression parameters. An appropriate quality functionfor estimating
B is given by

q(z,θ ) = q(x,y,B) = ∥y−B⊤x∥2
p = (y⊤− x⊤B)(y−B⊤x). (4)

Theh-trimmed estimator̂B for B can be determined by calculating the least squares
estimator

B̂I (Y) = (X⊤
I XI )

−1X⊤
I YI

for each subsampleI = {n1, . . . ,nh} ⊂ {1, . . . ,N} for which the inverse ofX⊤
I XI

exists, whereXI = (xn1, . . . ,xnh)
⊤ and YI = (yn1, . . . ,ynh)

⊤. Then B̂(Y) is that
B̂I∗ (YI∗) with

I∗ = argmin

{
h

∑
j=1

∥yn j − B̂I (YI )
⊤xn j∥2

p; I = {n1, . . . ,nh} ⊂ {1, . . . ,N}
}
.

However, an exact computation is only for small sample sizesN possible. For larger
sample sizes, a genetic algorithm with concentration step like that proposed by
Neykov and Müller (2003) can be used, see also Rousseeuw andDriessen (2006).

Note that the inverse ofX⊤
I XI always exists as soon ash is greater than the

nonidentifiability parameterNβ (X) with λ = β . The subset estimator̂BI is scatter
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and translation equivariant so thatB̂I∗ is translation equivariant. However̂BI∗ is
only scatter (scale) equivariant ifp= 1. Otherwise it is only scatter equivariant with
respect to orthogonal matricesA since then

q(x,A⊤y+B⊤x, B̂I (YA +XB))

= ∥A⊤y+B⊤x− B̂I (YA +XB)⊤x∥p

= ∥A⊤y+B⊤x− (A⊤Y⊤
I +B⊤X⊤

I )XI (X⊤
I XI )

−1x∥p

= ∥A⊤y−A⊤Y⊤
I XI (X⊤

I XI )
−1x∥p = ∥A⊤y−A⊤B̂I (Y)⊤x∥p

= (y⊤− x⊤B̂I (Y))AA⊤ (y− B̂I (Y)⊤x) = q(x,y, B̂I (Y))

for all I = {n1, . . . ,nh} ⊂ {1, . . . ,N}.
Thed-fullness is given here by the nonidentifiability parameterNβ (X). This is

an extension of the result in Müller and Neykov (2003) whereit was proved for
univariate generalized linear models.

Lemma 2. If the quality function q is given by (4), then{qn(Z, ⋅); n= 1, . . . ,N} is
d-full with d= Nβ (X)+1.

Proof. Consider anyI ⊂ {1, . . . ,N} with cardinalityNβ (X)+1. Then the triangle
inequality provides for anyc∈ IR

{B ∈ IRr×p; max
i∈I

qi(zi ,B)≤ c}= {B ∈ IRr×p; max
i∈I

∥pyi −B⊤xi∥p ≤
√

c}

⊂ {B ∈ IRr×p; max
i∈I

∥B⊤xi∥p−∥yi∥p ≤
√

c}

⊂ {B ∈ IRr×p; max
i∈I

∥B⊤xi∥p ≤
√

c+max
i∈I

∥yi∥p}

= {B ∈ IRr×p; max
i∈I

∥B⊤xi∥p ≤
√

c̃}= {(b1, . . . ,bp) ∈ IRr×p; max
i∈I

p

∑
j=1

(b⊤
j xi)

2 ≤ c̃}

⊂ {(b1, . . . ,bp) ∈ IRr×p;
1

Nβ (X)+1 ∑
i∈I

p

∑
j=1

b⊤
j xix

⊤
i b j ≤ c̃}

= {(b1, . . . ,bp) ∈ IRr×p;
1

Nβ (X)+1

p

∑
j=1

b⊤
j ∑

i∈I
xix

⊤
i b j ≤ c̃}.

The definition ofNβ (X) implies that the matrix∑i∈I xix⊤i is of full rank. Hence
the set{(b1, . . . ,bp) ∈ IRr×p; 1

Nβ (X)+1 ∑p
j=1b⊤

j ∑i∈I xix⊤i b j ≤ c̃} is bounded and

therefore included in a compact subset ofIRr×p. ⊓⊔

Since the upper bound for the breakdown point given by Theorem 1 and Theorem
2 holds also for estimators which are not scatter equivariant, the combination of
these theorems, Theorem 5 and Lemma 2 provides the followingresult. This result
was derived for univariate regression already in Müller (1995).
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Theorem 6. If
⌊

N+Nβ (X)+1
2

⌋
≤ h≤

⌊
N+Nβ (X)+2

2

⌋
, then the breakdown point of the

trimmed estimator̂Bh for B with quality function given by (4) satisfies

ε∗(B̂h,Z) =
1
N

⌊
N−Nβ (X)+1

2

⌋
.

Müller (1995) showed Theorem 6 not only for estimatingβ but also for general
linear aspectsλ = Lβ of univariate regression models. TherebyNβ (X) must be
only replaced byNλ (X) in Theorem 6. However in this case the lower bound cannot
be derived viad-fullness. In Müller (1995), the lower bound was proved directly for
trimmed estimators, see also Müller (1997). This proof holds also for multivariate
regression so that Theorem 6 holds also for linear aspectsΛ = LB of multivariate
regression.

6.2 Univariate regression with simultaneous scale estimation

If simultaneously the regression parameterβ ∈ IRr and the scale parameterσ ∈
IR+ in a univariate regression model shall be estimated, then the following quality
function can be used

q(z,β ,σ) = q(x,y,β ,σ) =
1
2

(
y− x⊤β

σ

)2

+ log(σ). (5)

In Müller and Neykov (2003) a little bit more general quality function were
considered. But for simplicity, the quality function (5) shall be used here. Theh-
trimmed estimator(β̂ , σ̂) for (β ,σ) can be determined by calculating the maximum
likelihood estimators

β̂I (y) = (X⊤
I XI )

−1X⊤
I yI

and

σ̂I (y) =

√√√⎷1
I

h

∑
j=1

(yn j − x⊤n j
β̂I (y))2

for each subsampleI = {n1, . . . ,nh} ⊂ {1, . . . ,N}, whereyI = (yn1, . . . ,ynh)
⊤ and

againXI = (xn1, . . . ,xnh)
⊤. Then(β̂ (y), σ̂ (y)) is that(β̂I∗(y), σ̂I∗(y)) with

I∗ = argmin

{
h

∑
j=1

q(xn j ,yn j , β̂I (y), σ̂I (y)); I = {n1, . . . ,nh} ⊂ {1, . . . ,N}
}
.

β̂I is translation equivariant and scale equivariant andσ̂I is translation invariant and
scale equivariant. Therefore we have
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q(x,ya+ x⊤β , β̂I (ya+Xβ ), σ̂I (ya+Xβ ))

=
1
2

(
ya+ x⊤β − x⊤(β̂I (y)a+β )

σ̂I (y)a

)2

+ log(σ̂I (y)a)

= q(x,y, β̂I (y), σ̂I (y))+ log(a)

for all I = {n1, . . . ,nh} ⊂ {1, . . . ,N} so thatβ̂I∗ is translation equivariant and scale
equivariant and̂σI∗ is translation invariant and scale equivariant.

Since the simultaneous estimator(β̂ , σ̂) for (β ,σ) breaks down when one of
its components breaks down, an upper bound of the breakdown point of (β̂ , σ̂ ) is
1
N

⌊
N−max{Nβ (X),E (X)}+1

2

⌋
according to Section 4.1 and Section 4.2.

Deriving a lower bound for the breakdown point, Müller and Neykov (2003)
implicitely assumed that the exact fit parameterE (X) is zero. Here we extend this
result for the case that it must be not zero.

Theorem 7. If the quality function q is given by (5), then{qn(Z, ⋅); n= 1, . . . ,N} is
d-full with d= max{Nβ (X),E (X)}+1.

Proof. We have to show thatγ given by

γ(β ,σ) := max
i∈I

1
2

(
yi − x⊤i β

σ

)2

+ log(σ)

is sub-compact for allI ⊂{1, . . . ,N} with cardinality max{Nβ (X),E (X)}+1. Take

anyc∈ IR and setβ̃(σ) := argmin{γ(β ,σ); β ∈ IRr} andσ̃(β ) := argmin{γ(β ,σ);
σ ∈ IR+}. Thenβ̃(σ) is independent ofσ such thatβ̃ (σ) =: β̃ . Setting

γ1(σ) := γ(β̃ (σ),σ) = max
i∈I

1
2

(
yi − x⊤i β̃

σ

)2

+ log(σ)

we see thatγ1 is a sub-compact function sinceI has cardinality greater thanE (X).
Hence, there exists a compact setΘ1 ⊂ int(IR+) such that{σ ; γ1(σ) ≤ c} ⊂ Θ1.
Moreover, we have that withη(β ) := maxi∈I

∣∣yi − x⊤i β
∣∣

σ̃(β ) = η(β )

so that

γ2(β ) := γ(β , σ̃(β )) =
1
2
+ log(η(β )) .

The proof of Lemma 2 provides thatη is sub-compact. Since the logarithm is
monoton alsoγ2 is sub-compact so that{β ; γ2(β ) ≤ c} ⊂ Θ2 for some compact
setΘ2 ⊂ int(IRr). Then we have

{(β ,σ) ∈ IRr × IR+; γ(β ,σ)≤ c}
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⊂ {(β ,σ) ∈ IRr × IR+; γ1(σ)≤ c andγ2(β )≤ c} ⊂Θ2×Θ1

so thatγ is sub-compact. ⊓⊔

Theorem 8. If
⌊

N+max{Nβ (X),E (X)}+1
2

⌋
≤ h≤

⌊
N+max{Nβ (X),E (X)}+2

2

⌋
, then the break-

down point of the trimmed estimator(β̂ , σ̂ )h for (β ,σ) with quality function given
by (5) satisfies

ε∗((β̂ , σ̂)h,Z) =
1
N

⌊
N−max{Nβ (X),E (X)}+1

2

⌋
.
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