Upper and Lower Bounds for Breakdown Points

Christine Muller

Abstract General upper and lower bounds for the finite sample breakgmint
are presented. The general upper bound is obtained by anagbpof Davies and
Gather (2005) using algebraic groups of transformatidns.dhown that the upper
bound for the finite sample breakdown point has a more singsta than for the
population breakdown point. This result is applied to nvaltiate regression. It is
shown that the upper bounds of the breakdown points of esiismaf regression
parameters, location and scatter can be obtained with the geoup of transforma-
tions. The general lower bound for the breakdown point ofesestimators is given
via the concept ofl-fullness introduced by Vandev (1993). This provides that t
lower bound and the upper bound can coincide for least trichsggiares estima-
tors for multivariate regression and simultaneous estonaif scale and regression
parameter.

1 Introduction

The breakdown point of an estimator introduced by Hamper{}% a simple and
successful measure of the robustness of an estimator agaiasges of the ob-
servations. In particular, it is easy to understand theefisdmple version of the
breakdown point. Estimators with a high breakdown pointiasensitive to a high
amount of outlying observations. Moreover, they can be tseétect observations
which do not follow the majority of the data. Some estimattage a breakdown of
50% while in other situations the highest possible breakdpaint is much smaller
than 50%. Therefore it is always important to know what is liigthest possible
breakdown point. Then it can be checked whether specifimasirs can reach this
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upper bound. This can be done by deriving lower bounds faelestimators. Here
general upper and lower bounds for the breakdown point acudsed.

Two finite sample breakdown point concepts are given in 8e&i In Section 3,
a general upper bound is derived via the approach based ebralg groups of
transformations introduced by Davies and Gather (2005)leNhavies and Gather
(2005) developed this approach for the population versfdhebreakdown point,
here this approach is transfered to the finite sample vedditite breakdown point.
This leads to a very simple characterization of the uppentoDavies and Gather
(2005) applied the approach to multivariate location aradtec estimation, univari-
ate linear regression, logistic regression, the Michadisnten model, and time se-
ries using different groups of transformations for eaclec&egarding multivariate
regression in Section 4, linear regression as well as nauiite location and scatter
estimation can be treated here with the same approach.tinyar the same group
of transformations is used for the three cases. In Sectianggneral lower bound
for the breakdown of some estimators based on the approadtiudihess devel-
oped by Vandev (1993) is presented. With this approachldviahd Neykov (2003)
derived lower bounds for generalized linear models likestigregression and log-
linear models and Muller and Schafer (2010) obtained tdveeinds for some non-
linear models. This approach is used here in Section 6 tagedower bounds for
multivariate regression and simultaneous estimation@stiale and regression pa-
rameter in univariate regression. It is shown in particthat least trimmed squares
estimators are attaining the upper bounds derived in Sedtio

2 Definitions of Breakdown Points

Let be© a finite dimensional parameter spazg, ..,zy € 2 a univariate or mul-
tivariate sample i, and6 : 2N — © an estimator fof € O. If int(©) denotes
the interior of the parameter space, then a general definitiche finite sample
breakdown is as follows, see e.g. Hampel et al. (1986), p. 97:

Definition 1. The breakdown point of an estimar 2N — © atZ = (zy,...,zn) "
€ 2N is defined as

e*(é,Z) = %min{M;
there exists no compact 8 C int(Q) with {8(Z); Z € Zu(Z)} C 6o},
where
(Z):={Z e ZN; cardn; 2, #2a} <M}

is the set of contaminated samples corrupted by at iMasibservations.
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Often the definition via compact subsets is replaced by aitlefirvia explosion
with respect to a special pseudomettion @, see e.g. Donoho and Huber (1983),
Davies and Gather (2005).

Definition 2.

£(8,2,d) = =min{M; sup d(8(Z),8(z)=co}.
N Ze % (2)

Is © = RP, then the pseudometric can be chosen as the Euclidean rheffiic
Is© =[0,) C R, for example for scale parameters, then an appropriateefiof
the pseudometric ig(61, 8,) = |log(6: - 6, 1), see Davies and Gather (2005). This
is again a metric but its extension to scatter matrices ig argseudometric, as is
discussed in Section 4.2.

Davies and Gather (2005) used the population version of thakidown point
and not the finite sample version of Definition 2. But they peihout that the finite
sample version is obtained by using the empirical distiilbutThey provided a
general upper bound for the population version of Definiflarsing transformation
groups on the sample spacgé. Here this approach is given at once in the sample
version.

3 A General Upper Bound

For the breakdown point of Definition 2, a general upper bocewtl be derived if
the estimato® is equivariant with respect to measurable transformatiiven by
a group

9Y:={9,9: % — Z}.

Recall that¥ is a group in algebraic sense with actianand unit element if and
only if

e Qgiogxe¥forallgy, 929,
e log=g=golforalge¥?,

o foreverygec ¥ there existg ' withgogt=1=g1og.

Definition 3. An estimator@ : N — @ is called equivariant with respect to a group
¢ if there exists a group?y = {hg; g € ¢} of transformation$y : © — O such
that for everyg € ¢ there existsyy € 7 with

~

0((9(2),---.9(zn)) ") = hg(B((21,---,2n) "))

for all sample<Z = (zy,...,zn) " € ZN.
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To derive the upper bound for the breakdown point, the falhgsubset of/ is
needed

= ; lim inf h = oo},
“1:={ge¥; lim inf d(6,hy(6)) = oo}
If 41 =0, then the grougy is too small to produce transformed parameters arbitrar-

ily far away from the original parameter.

Theorem 1.If the estimato® : 2N — @ is equivariant with respect t& and¥; #
0, then

{NA(Z)JrlJ

forall Z ¢ N, where

A((za,.-,2n) ") := max{card(n; g(zn) = z}; g € %}
and | x| is the largest integer m with ad x.
Note the more simple form of the quantify(Z) compared with its form in the
population version given by Davies and Gather (2005).

Proof. Regard an arbitrary observation vectorLet beM = %J andL =

A(Z). Then there existg € ¢ so that without loss of generality(z,) = z, for
n=1,...,L. Then we also havgX(z,) = ¢ *(z1) = ... = ¢%(zn) = gog(zn) =

9(9(zn)) =9(zn) =znforalln=1,...,L and all integek. DefineZ* andZ" for any
integerk by
K=z, for n=1,...,LandL+M+1,...,N,

=gz )forn7L+1 SL+M,
and

=zy for n=1,... L+ M,
Kz )forn—L+M+1 .+ N.

Obviously,Z* € 2 (Z). SinceN — (L+M) =N —L— [NL | < N[ — ML =
NoL < |N=HEL |, we also hav&Z® € % (Z). Moreover, it holds

KZ)=dz0) =zn=% forn=1,... L,
Z) =d(zn) =25 forn=L+1,....L+M,
o)) =90 (z) =g og Mz) =zn =25 forn=L+M+1,...N.

Sinceg € %1 and8((g(Z5)....,g"(Zk) ") = hy(B((Z....ZK)T)). we obtain
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= lim d(8((¢(@)....." (@) ). 8(Z) = fim d(hy(8(Z)). 8(Z")) = .

Because ofi(6
)

k

cause ¢ ) < d(6(Z2%),8(2)) +d(6(2),8(Z%)), at least one of
d(6(2%),6(2) )

)) must converge teo for k — 0 as well. O

4 Example: Multivariate Regression

The multivariate regression model is given by
y;lr = XnTB + e;]rv

wherey, € RP is the observation vectok, € R' the known regression vec-
tor, B € R™*P the unknown parameter matrix amd € RP the error vector. Set
z=(x",y")" €  =R*Pand assume thai, ..., ey are realizations of i.i.d. ran-
dom variable€,, ..., En with location parametell, and scatter matrix, whereOp
denotes the-dimensional vector of zeros. The interesting aspe®& ehall be the
linear aspect\ = LB with L € RS*". We consider here the problem of estimating
A in Section 4.1 and of estimatingin Section 4.2.

In both cases, we can use the following group of transfoionati

9 ={gap: Z — Z; AcRP*Pisregular B € R™P}

with gag((x",y") ") = (x",y"A+x"B)". The unit element of this group is=
91,.0r..p» WhereOr . is ther x p-dimensional zero matrix ang the p-dimensional
identity matrix. The inverse aja g is given byga -1 _ga-1.

4.1 Estimation of a linear aspect of the regression parameters

An estimator® = A : 2N — RSP for 8 = A = LB € RSP should be scatter equiv-
ariant and translation equivariant, i.e. it should satisfy

o~

A(9a5(z0). - 9a8(z) ) = ho, o (A (2))
with hg, ; (A) =AA+LB forallgag € 4. With ¢, also
My = {hg, 5 : R"P = R¥P; A ¢ RP*Pisregular B € R™P}

is a group of transformations.
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d(/\,h n (A)):d(OSXp,OSXpAn):d(OSXp,OSXp) :O

9B

for any pseudometrid on R%*P. HencelLB # Os.p is necessary foga g € %1.
Moreover, we havé\ = hg, . (A) =AA+LB ifand only if LB = A (I, —A) so
that

% ={gap €%, LB #0spandLB £ A (Ip—A) forall A € R¥P}.

SetX = (X1,...,xn) . Now we are going to show that(Z) is the maximum num-
ber of regressors, so that the univariate linear aspég@ with 3 € R" is not identifi-

able at these regressors, ¥4Z) is the nonidentifiability paramete (X) defined

in Muller (1995) for univariate regression, see also Mii({1997).

Definition 4. L3 is identifiable aD = {Xn,,...,Xn, } if and only if for all 3 € R
X, B=0fori=1,...,1 impliesL B = 0.

If Xp = (xnl,...,xn,)T, then it is well known thal 3 is identifiable atD =
{Xny,---,%n } if and only if L = KX p for someK € RS*!, see e.g. Milller (1997),

p. 6.

Definition 5. The nonidentifiability parameter; (X) for estimatingA =L 3 in
univariate regression, i.8.€ R, is defined as

3 (X) :=max{cardn; x, B =0}; B € R with A =L # 0}
= max{cardD; A =L f3 is not identifiable aD}.

Theorem 2.
A(Z) = H5(X).

Proof. Let bega g € %41 and assume that there exisgs, . . ., Zy, With ga g(Zn) = Z,
fori=1,....1.

If A=1p,thenitholdga g(z) =z=(x",y")" ifand onlyifx "B = 01, p so that
A(Z) > maxX{cardn; x, B =0}; B € RP with L3 # 0} sinceLB £ 0 forga g € %.
In this casel.B # A (Ip<p — A) is always satisfied for al\ € R®*P so that it is no
restriction.

Now consideiA # | ,. Assume thak 3 is identifiable aD = {Xy,,...,Xn, } With
| =A(Z). Then there exists € RS suchthat =KX p. SetYp = (Yny,.--,Yn) -
Sincega g(zn) = zn, if and only if x; B =y, (Ip — A), we obtain the contradiction

xp, B Yo, (Ip—A)
LB =KXpB =K : =K : =KYp(lp—A)
XIIB y;l(lp—A)

sincega g € ¢1. This means thdt 3 cannot be identifiable & = {X,,...,Xn, } SO
thatA(Z) =1 <max{cardn; x, B =0}; B RPwithLB #0}. O
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From the proof of Theorem 2 it is clear that the assertion aéofem 2 holds
also without using the scatter equivariance of the estimAtoSee also Sections
4.1.1and 4.1.2.

4.1.1 Location model

A special case of multivariate regression is multivariatsation withx, = 1 for all
n=1,...,N, whereB € R™P is the parameter of interest. In this case, identifiability
holds always so thal(Z) = 0. Hence we have the highest possible upper point of
& %52, This result was obtained by Davies and Gather (2005) usitlg the
translation group

9" ={9,8:2 — Z;BcR"P}

so that
9t =19 0B € @', B # Orxp}-

They wrote in their rejoinder th&t}- would be empty if scatter transformations are
considered as well. B} becomes larger if a larger group of transformation is
regarded.

For the special case of univariate data, pe= 1, with location parametgr € R,
the condition

Osxp# LB #A (Ip—A) forall A € R™P (1)
becomes
O04£b#u(l—a)foral ueR, (2)

wherea,b € R replaceA andB. Since condition (2) is only satisfied far= 1 we
have
k=9

sothatindeed it does not matter if the scatter (here scaigyariance is additionally
demanded.

For univariate data the upper bougd M4 | is attained by the median. A mul-
tivariate extension of the median, which is scatter andstedion equivariant, is
Tukey's half space median. But its breakdown point lies drégweens; andg,
see Donoho and Gasko (1992). As far as the author knows, ighamescatter and
translation equivariant location estimator which attafresupper bound fop > 1.

4.1.2 Univariate regression

Another special case of multivariate regression is urétanegression witlp = 1,
where the unknown parametiis 8 € R". The result
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A(Z) = A (X)

was obtained by Miiller (1995) using only the transformagigy((x',y)") =
(x",y+x"b)" in a proof similar to that of Theorem 1, see also Miiller (1997

The special casef3 = 3 was considered by Davies (1993) who derived the upper
bound for the population version of the breakdown point.iBsxand Gather (2005)
provided this result as an example of the approach via groups

Using the translation group

GR={gy: % > Z,becR'}
with go((x",y) ") = (x",y+x"b) T, as Davies and Gather (2005) did, leads to
GR=1{gh e GR; b #0r}.
But since condition (1) becomes here
O #b#B(1l—a)forall Be R,
with b € R" anda € R, it is again only satisfied faa = 1 so that
yR=9.

Hence as for location estimation, the restriction to traishs is no real restriction
here.

4.2 Scatter estimation

An estimatord = 5 : 2N — . of the scatter matri& € . = {A € RP*P; A
is symmetric and positive definiteshould be scatter equivariant and translation
invariant, i.e. it should satisfy

Z((9as (1), GaB(2) ") = hg, o (2(2))
with hg, . (£) =AZAT forallgag € ¥. With ¢, also
Hy ={hg,g =ha 7 =, A c RPPisregular}
is a group of transformations. An appropriate pseudometri¢” is given by
d(51,5,) := |log(det =3 2, 1))
It holdsd(Z4,5) = 0 if and only if defZ; 2, %) = 1. This is not only satisfied by

2, =2y, since e.g. diagonal matrices like didgl) and diaq%, 2) are satisfying this
as well. Hencal is not a metric. But it is a pseudometric because it is alwagatgr



Upper and Lower Bounds for Breakdown Points 9

than 0 and it satisfies the triangle inequality. SincéAg A" 5, 1) = de(5; 5, 1)
as soon as déA) = 1,% is given by

G = {gA,B €Y, det(A) 75 1}.

Sincega g(z) =zifand only ifx'B=y' (I,—A), we have at once the following
theorem.

Theorem 3.

A(Z) =maxX{cardn; x,B=y, (Ip—A)};
B e R™*P, A € RP*Pis regular withdetA) # 1}.

4.2.1 Location model

In the special case of multivariate location with= 1 for alln=1,....N and

B € R™Pwe havega g(z) = zifand only ifB=y ' (I, — A). Hence{y € RP; B =
y'(Ip—A)} is a hyperplane ifRP. Conversely, if{y € RP; ¢’ =y'C} is an
arbitrary hyperplane irRP, then it can be assumed that dgt— C) # 1 so that
9,-ccT € . This implies that (Z) is the maximum number of observations lying
in a hyperplane. According to Theorem 1, the upper boundebtieakdown point
of an equivariant scatter estimator is given by the maximumiper of observations
in a hyperplane. It attains its highest value for observetio general position. But
sincep points are lying in the hyperplane &P spanned by these points, an upper

bound for the breakdown point is alwa; w . The population version of this

result was originally given by Davies (1993) and derived byup equivariance in
Davies and Gather (2005).

For the one-dimensional cage= 1), it means that the upper bound of the break-
down point of a scale equivariant and translation invarsaate estimator is deter-
mined by the maximum number of repeated observations. Herdighest value
of the upper bound is given by pairwise different observegidrhis highest upper
bound is for example attained by the median absolute devi@#lAD). However,
it can happen that the upper bound is not attained by the medlisolute deviation
if observations are repeated. Davies and Gather (2007)tgavellowing example

1.0,1.8,1.3,1.3,1.9,1.1, 1.3,1.6, 1.7, 1.3, 1.3.

The median absolute deviation of this sample is 0.2. But as a8 one observation
unequal to 1.3 is replaced by 1.3, the median absolute daviat 0. Hence the
breakdown point of this sample fsi However, since 1.3 is repeated five times, the
upper bound for the breakdown point is

1 {11—5+1J 3

11 2 11°
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4.2.2 Univariate regression

In the special case of univariate regression vath 1, the condition
x'B=y' (Ip—A)

becomes .
x'B=y(l-a)<=y=x'p

with B € R, 1#ac Randf = t£:8. This means thaf\(Z) is the maximum
number&’ (X) of observations satisfying an exact fit.

Definition 6. The exact fit parameter is defined as
&(X) == max{card(n; yn = X, B}; B € RP}.

Hence we have here

5 A general lower bound for some estimators

Since there are always estimators with a breakdown poiﬂNﬂ of even 0, a lower
bound can be only valid for some special estimators. He weidenestimators of
the form

~

0(2):= argerr;iOns(Z, 0)

with s: 2N x © — R, wheres(Z, ) can be bounded from below and above by
some quality functiong|: 2 x © — R. These quality functions can be residuals
but also some negative loglikelihood functions as considéar Muller and Neykov
(2003). Setyn(Z,0) =q(zn,0) forn=1,...,N andq)(Z,0) < ... <qn(Z,0).
Then there shall exist, 3 € Rwith a #0andh e {1,...,N} such that

aqm(Z,0) <s(Z,0) <Ban)(Z,0) 3)

forall Z € 2N and@ < O. In particular h-trimmed estimators given by

bh(Z) == argerggwn;q(m(L 6)

are satisfying condition (3). But also S-estimators arisfsang this condition, see
e.g. Rousseeuw and Leroy (2003), pp. 135-139.

For deriving the lower bound for the breakdown point, the Digén 1 for the
breakdown point is used. This definition is checking whetiher estimators are
remaining in a compact subset of the parameter space. Vipacinsets, Vandev
(1993) developed the conceptafullness which was used by Vandev and Neykov
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(1998) to estimate this breakdown point for trimmed estoratA modification of
this concept, used in Muller and Neykov (2003), bases ofdifmving definitions.

Definition 7. A function y : © — R is called sub-compact if the set
{6 € ©; y(0) < c} is contained in a compact s8¢ C int(@) forallce R.

Definition 8. A finite setl” = {y,: © - R; n=1,...,N} of functions is calledl-
full if for every {ni,...,ng} C {1,...,N} the function y given by
y(0) :=max{y, (0); k=1,...,d} is sub-compact.

At first note the following lemma of Muller and Neykov (2003)

Lemma 1. If {qn(_Z,-); n=1...,N}is d—iull, M <N -—h, and M< h—d, then
q(d)(Z, 9) < q(h)(Z, 9) < amy (Z, 9) forall Z € %y (Z) ando € O.

Proof. Regardhy,...,ny with g (Z,0) = 0n (Z,0) fork=1,...,h. Sinceh> M+
dwe have I< k(1) <... <k(d) < hwith gy, (Z,0) = Uny) (Z, 6). Then we obtain

q(h) (zv 6) = On, (Zv 6) > an(d) (Zv 6) > an(i) (Zv 6) = an(i) (27 6)

foralli=1,...,d. Thisimpliesq, (Z,6)> d(d)(Z, 8). The other inequality follows
similarly. O

Theorem 4 (Miller and Neykov (2003)).f the estimator® satisfies condition 3)
and{qn(Z,-); n=1,...,N} is d-full, then
£4(0,2) > % min{N—h+1,h—d+1}.

Proof. LetM = min{N —h,h—d}. Lemma 1 together with assumption (3) provide
that

aq(Z,0) <s(Z,8) <Baqn)(Z,6)

forallZ € 214(Z) and6 € ©. This means

~

00@)(Z.8(2)) <8(Z,8(Z)) =mins(Z,6) < f min)(Z,6)

forallZ € Z(Z). Settingco := £ ming A (Z,8) we have{8(Z); Z € 2u(Z)} C
{6 €0; q4)(Z,0) < co} so that we have only to show thagiven by
y(6) == qa)(Z,6) = max{q)(Z,0),...,dq)(Z,0)}

= max{dn,(6)(Z,0),---,0ny(6)(Z,0)}
is sub-compact. Assume that this is not the case. Then thésts e € R such

that {0; y(8) < c} is not contained in a compact set. Hence, there exists a se-
quence(Bm)men € {0; y(6) < c} such that every subsequence(6f)men is not



12 Christine Muller

converging. Because ghi(6m),...,nq4(6m)} C {1,...,N} we have a subsequence
(Bm(k) )ken @ndng, ..., ng such thany (), - - -, Nd (B } = {N1,- .., g} for all

k € N. This implies y(6yk)) = max{an, (Z, Bnk)); - - - »Gng(Z, Oy ) } < ¢ for all

k € N. However, maxany(Z,:),...,0n(Z,-)} is sub-compact since
{q(Z,-),...,an(Z,-) } is d-full. This provides that By )ken cONtains a conver-
gent subsequence which is a contradiction. Hgnisesub-compact. O

The lower bound of Theorem 4 is maximized if the trimming fadt satisfies
|NHd | < h< [N A simple consequence of this fact is the following result
concerning trimmed estimators.

Theorem 5. Assume thafdn(Z,-); n=1,...,N} isd-fulland| M4 | <h < | Negel |,
Then the breakdown point of any trimmed estimﬁpsatisfies
~ 1 {N —d+ ZJ

6 Example: Regression

6.1 Multivariateregression

Consider again multivariate regression witlke R", y € RP and unknown matrix
B € R™*P of regression parameters. An appropriate quality fundoorestimating
B is given by

q(z,0) =q(x,y,B) = ly-B'x|[5=(y" —x'B)(y—B"x). (4)

Theh-trimmed estimatoB for B can be determined by calculating the least squares
estimator

Bi(Y) = (X, X)X,y
for each subsample= {ny,...,ny} C {1,...,N} for which the inverse oK, X
exists, whereX; = (Xn,,...,Xn,)| andY; = (Yn,,-..,¥n,) . Then B(Y) is that
B\u (Y|*) with

h
L :argmin{ > 1y, = Bi(Y1) x5 1 = {n,....mn} C {1,...,N}}.
=

However, an exact computation is only for small sample dizpsssible. For larger

sample sizes, a genetic algorithm with concentration stepthat proposed by

Neykov and Muller (2003) can be used, see also Rousseeudrégsen (2006).
Note that the inverse oX,' X, always exists as soon #sis greater than the

nonidentifiability parameter/ (X) with A = 3. The subset estimatd; is scatter
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and translation equivariant so thﬁt* is translation equivariant. Howevéu is
only scatter (scale) equivariantpf= 1. Otherwise it is only scatter equivariant with
respect to orthogonal matricéssince then
q(x,A'y+B"x,B|(YA +XB))
= |ATy+B x—B(YA+XB) x|
= ATy +B x— (ATY B X)X (X" X)X p
= ATy =ATY X (X X)) X[[p= ATy = ATBi(Y) X[
= (y" —x"Bi(Y)AAT (y—Bi(Y)"x) = q(x,y,Bi(Y))
foralll ={nq,...,nn} C {1,...,N}.
Thed-fullness is given here by the nonidentifiability parametgy(X). This is

an extension of the result in Muller and Neykov (2003) whieneas proved for
univariate generalized linear models.

Lemma 2. If the quality function q is given by (4), th€i,(Z,-); n=1,...,N} is
d-full with d = A(X) + 1.

Proof. Consider any C {1,...,N} with cardinality.43(X) + 1. Then the triangle
inequality provides for ang € R

{B € R™P; maxq(zi,B) < ¢} = {B € R™P; max]pyi —B'xil[p < v/c}
IS IS
C {B e R max||B xillp— [lyillp < v/}

C {B € R™P; max|Bxi[|p < vC+max|yi[|p}

p
= {Be R™P; mGGIIXHBTXin < V& ={(by,...,bp) € R™*P; meallxz (b xi)* < &
| | J:l

1 p
C {(by,...,bp) e R7P; ———— bl xix b; < &
i FAIES PN Ll

1

_ rxp.

p
bl $xx bj <&}.
The definition of.#;(X) implies that the matrixy;c; xix;" is of full rank. Hence
the set{(by,...,bp) € R™P; szilb? Sic1 XiX{ bj < &} is bounded and
therefore included in a compact subselRfP. O

Since the upper bound for the breakdown point given by Thedrand Theorem
2 holds also for estimators which are not scatter equiviarthe combination of
these theorems, Theorem 5 and Lemma 2 provides the follosesgt. This result
was derived for univariate regression already in Mull&393).
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Theorem 6.If {%(X)HJ <h< {WJ , then the breakdown point of the

trimmed estimatoB, for B with quality function given by (4) satisfies

nz)= 1[N

Muller (1995) showed Theorem 6 not only for estimatjhidput also for general
linear aspectd = LB of univariate regression models. Thereb (X) must be
only replaced by#; (X) in Theorem 6. However in this case the lower bound cannot
be derived via-fullness. In Muller (1995), the lower bound was provecdity for
trimmed estimators, see also Miller (1997). This proofisdlso for multivariate
regression so that Theorem 6 holds also for linear aspeetd B of multivariate
regression.

6.2 Univariateregression with simultaneous scale estimation

If simultaneously the regression paramgfee R and the scale parameter €
R™ in a univariate regression model shall be estimated, theralfowing quality
function can be used

.
a(z.p.0) =dbeypo) = 3 (YL ;B) +log(0). ©)

In Muller and Neykov (2003) a little bit more general quglfunction were
considered. But for simplicity, the quality function (5)ashbe used here. Thie-
trimmed estimato(ﬁ, o) for (B, 0) can be determined by calculating the maximum
likelihood estimators N

Bi(y) = (X[ X)Xy

and

1 h
= I_ Z yn] XI"IJB| )
for each subsample= {ny,.. nh} c{1,...,N}, wherey. = (Ynys---,¥n,) | and
againX; = (Xny,--.,Xn,) . Then(B B(y), 6( ) is that(B,, (), i, (y)) with
h

L :argmin{ Z q(xnj,ynj,ﬁ.(y),&(y)); I ={ng,....,np} C {1,...,N}}.
=1

B is translation equivariant and scale equivariant @nis translation invariant and
scale equivariant. Therefore we have
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q(x,ya+x' B, B (ya+XB),6i (ya+XB))

C1(yarx B—x (Bya+p)\’
B ai(y)a

2
= q(x,y. A (y),3i (y)) +log(a)

+log(ai (y)a)

foralll ={ny,...,ny} C {1,...,N} so thatﬁu is translation equivariant and scale
equivariant andb;, is translation invariant and scale equivariant.

Since the simultaneous estimat((ﬁ, o) for (B,0) breaks down when one of
its components breaks down, an upper bound of the breakdoimt qf (LA?, o) is
ﬁ {meax{‘%(z)()’”@(x)}HJ according to Section 4.1 and Section 4.2.

Deriving a lower bound for the breakdown point, Miller anéyKov (2003)
implicitely assumed that the exact fit parameféX) is zero. Here we extend this
result for the case that it must be not zero.

Theorem 7.1f the quality function q is given by (5), thdan(Z,-); n=1,...,N} is
d-full with d = max{_#3(X),&(X)} + 1.

Proof. We have to show that given by

- 1/yi—x'B
ro.0) =g (15

)2 +log(o)

is sub-compactforall C {1,...,N} with cardinality max. 43 (X), & (X) } +1. Take

anycec Rand sgﬁ(a) =argmin{y(B,0); B R} andd(B) :=argmin{y(B,0);
o € R"}. ThenB(o) is independent ofr such thaf3(o) =: . Setting

~\ 2
(0) = v(B(0),0) = maxs <%> +log(o)

we see thay, is a sub-compact function sint¢énas cardinality greater thafi(X).
Hence, there exists a compact &tC int(R") such that{o; y1(0) < c} C 6.
Moreover, we have that with (B) := maxe; |yi — X' B|

a(B)=n(B)
so that
~ 1
vo(B) == y(B,6(B)) = 5 +log(n(B)).
The proof of Lemma 2 provides that is sub-compact. Since the logarithm is
monoton alsoy is sub-compact so thd3; y»(8) < c} C ©, for some compact

set®, C int(R"). Then we have

{(B.o) e R xR"; y(B,0) <c}



16 Christine Muller
C{(B,0) e R"xR"; yi(0) <candy(B) <c} C O, x O,

so thaty is sub-compact. O

Theorem 8.If {Nmax{%(zx)’g(x)}HJ < {Nerax{%(zx)’g(x)HZJ , then the break-

down point of the trimmed estimat(ﬁ, 0 ) for (B, 0) with quality function given
by (5) satisfies

h<

e (B.om2) =« LNmax{%;xw(xnﬂJ |
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