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are based on the Paris-Erdogan equation which describes crack growth by a de-
terministic differential equation. By introducing a stochastic error term, crack
growth can be modeled by a nonstationary autoregressive process with Lévy-
type errors. A regression depth approach is presented to estimate the drift
parameter of the process. We then prove the consistency of the estimator un-
der quite general assumptions on the error distribution. By an extension of the
depth notion to simplical depth it is possible to use a degenerated U statistic
and to establish tests for general hypotheses about the drift parameter. Since
the statistic asymptotically has a transformed χ2

1 distribution, simple confi-
dence intervals for the drift parameter can be obtained. In the second part,
simulations of AR(1) processes with different error distributions are used to
examine the quality of the constructed test. Finally we apply the presented
method to crack growth experiments. We compare two datasets from indepen-
dent experiments under different conditions but with the same material. We
show that the parameter estimates differ significantly in this case.
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1 Introduction

The understanding of crack growth is very important for predicting the life
time of products as wheels of trains, bridges or hip replacement. The crack
growth is the faster the longer the crack is. This rule is expressed in the well-
known Paris-Erdogan equation by

d a

dN
= C (∆K)m with ∆K = ∆σ

√
π a G (1)

(see e.g. Pook 2000). Thereby a denotes the crack length or width, N is the
number of load cycles of a cyclic loading, C and m are constants depending
on the material. ∆K is the stress intensity factor, where ∆σ = σmax−σmin is
the amplitude of the cyclic stress and G is a geometrical factor. However, the
lifetime of material is not deterministic and cracks are influenced by atomic
structures. Therefore it is obvious that crack growth is a nondeterministic
process. Hence a stochastic process given by the stochastic differential equation

dA(t)

dt
= α0 + α1A(t)

m/2 +
dV (t)

dt
, (2)

where V (·) is a stochastic error process, α1 > 0, α0 ∈ IR,

is a more realistic description of the random crack growth process A(·) de-
pending on the time t, which is in line with the Paris-Erdogan equation. The
parameter m is given in many applications (often set as m = 2) so that α0

and α1 are the only unknown parameters.
Most results for stochastic differential equations deal with errors defined by

a Wiener process. But for crack growth, the Wiener process is not appropriate
since the process should be increasing. Moreover crack growth is often not
continuous since jumps appear in the growth process. These jumps are caused
by joining of different cracks or by the failure of substructures. A Lévy process
with nonnegative increments V (t+ h)− V (t) is then much more appropriate.
Here in particular prestressed concrete is considered as an example. In this
example, the breaking of the ropes for reinforcing the prestressed concrete
causes jumps in the width of the crack. These jumps can for example be
modeled by a Poisson-Gamma process or more simply by outliers in a process
with continuous distribution. Here we will treat these jumps as outliers.

Under these assumptions we consider the problem of estimating and te-
sting the drift parameter α1 from observations y0, . . . , yN of crack length or
crack width at time points t0, . . . , tN . For the statistical inference, the Euler-
Maruyama approximation of the stochastic process A(·) can be used (see Klo-
den et al. 2000 or Iacus 2008). It provides

A(t+ h)−A(t)

h
≈ α0 + α1A(t)

m/2 +
V (t+ h)− V (t)

h
or

A(t+ h)−A(t) ≈ hα0 + hα1A(t)
m/2 + V (t+ h)− V (t)

⇐⇒ A(t+ h) ≈ A(t) + hα0 + hα1A(t)
m/2 + V (t+ h)− V (t).
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If V (·) is a Lévy process then the increments V (t+ h)− V (t) are independent
and identically distributed. If h is fixed and the process is observed at time
points tn = t0 + nh for n ∈ IN , then we obtain an autoregressive process of
the form

Yn = Yn−1 + θ Y k
n−1 + En, (3)

where Yn = A(tn), k = m
2 is given, and θ = hα1 is the unknown parame-

ter. The errors En = V (tn) − V (tn−1) + hα0, n ∈ IN , are independent and
identically distributed. The speciality of this autoregressive process is that it
is nonstationary since α1 > 0 defines a growing process which implies θ > 0.
Moreover, we have Y0 = a0 ≥ 0, where a0 is the nonrandom initial crack length
or crack width. Note that (Yn)n∈IN is an AR(1) process if k = 1.

Stationary autoregressive and in particular stationary AR(1) processes we-
re extensively discussed in the literature. The case |1 + θ| < 1 is analytically
well tractable and a wide range of estimation and forecasting methods exist.
The first discussion refers to Mann and Wald (1943). The case of explosive
processes with |1 + θ| > 1 is of lower attention and appears less frequently in
applications. Anderson (1959) analysed the asymptotic behaviour of estimates
for AR processes in the explosive case. When the errors are assumed to be
independent and normally distributed the asymptotic distribution can be de-
rived. In presence of nonnormal errors Anderson pointed out, that asymptotic
distributions are hard to derive, since they depend on the assumptions on the
error distribution. Basawa et al. (1989) introduced a method to handle nonnor-
mal errors by bootstrapping. Here the errors are assumed to have a zero mean
and a finite variance. Another bootstrapping method was proposed by Stute
and Gründer (1993). This approach is a nonparametric method to construct
prediction intervals for AR(1) processes. The method requires the errors to
be defined by a differentiable, bounded, continuous, symmetric and unimodal
distribution. Paulaauskas and Rachev (2003) proposed maximum likelihood
estimators for AR(1) processes with nonnormal errors. Their approach allows
errors with independent and identical symmetric stable distributions where
the characteristic exponent is known.
Since the assumed errors in our case are asymmetric and posses heavy tails
resulting from jumps in the data, a general idea to derive estimators is to con-
sider a robust approach based on data depth. Data depth for linear regression
problems was at first considered by Rousseeuw and Hubert (1999). This ap-
proach was extended to polynomial regression by Wellmann et. al (2009), to
multiple regression and orthogonal regression by Wellmann and Müller (2010a,
b) and for some generalized linear models by Lin and Chen (2006).

Since all of the proposed models are not sufficient to describe the experi-
mental data of crack growth discussed here, in Section 2 we use data depth
to introduce a new estimator and a confidence interval for α1 as well as a test
for hypotheses on α1. Thereby we only assume that the median of the errors
En is zero. Under this simple assumption, the asymptotic distribution of the
test statistic and the consistency of the estimator is derived. Crucial for the
consistency is that the process A(·) and thus Yn is nonnegative. Due to θ > 0
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this can not be satisfied by stationary processes. Probably therefore, Huggins
(1989) combined the sign test for stationary AR processes with the least squa-
res estimator. In Section 3, the behavior of the new estimator and the new test
are studied by simulation. It is shown that the new test is much more robust
then the test of Anderson (1959) and has better power than the simple sign
test for small parameter values. The application on data in a fatigue experi-
ment of concrete carriers in Section 4 shows that confidence intervals for α1

are different in an early stage of the fatigue process if different stress levels are
used. All proofs are given in the Appendix.

2 Estimators, tests and confidence intervals based on depth

2.1 Depth estimator for AR processes

The idea of data depth is to define a measure which quantifies how deep a
parameter lies within the given dataset. Using a quality measure Q(θ, yn),
Mizera (2002) defines global data depth of a parameter θ within a data set
y1, . . . , yN as

dG(θ, y1, . . . , yN ) =
1

N
min {M ; ∃n1, . . . , nM and θ′ with

Q(θ′, yn) < Q(θ, yn) ∀n ∈ {1, . . . , N} \ {n1, . . . , nM}} .
Since global data depth is difficult to calculate in most cases, Mizera (2002)
also defines tangential data depth as

dT (θ, y1, . . . , yN ) =
1

N
min

0 6=u∈IRq

♯

{
n;

∂

∂θ
Q(θ, yn)

⊤u ≤ 0

}
.

For the AR process given by (3) a natural quality function is

Q(θ, yn, yn−1) = (yn − yn−1 − θykn−1)
2 (4)

with derivative

∂

∂θ
Q(θ, yn, yn−1) = −2(yn − yn−1 − θykn−1)y

k
n−1.

As soon as yn > 0 is always satisfied, we have

(yn − yn−1 − θykn−1)y
k
n−1

≤

≥ 0 ⇐⇒ (yn − yn−1 − θykn−1)
≤

≥ 0 (5)

so that the tangential data depth for the AR process (3) is

dAR
T (θ, y0, . . . , yN )

=
1

N
min

{
♯
{
n; yn − yn−1 − θykn−1 ≤ 0

}
, (6)

♯
{
n; yn − yn−1 − θykn−1 ≥ 0

}}
.

A maximum depth estimator is the parameter with maximum depth in the
data set y0, . . . , yN .



Analysis of crack growth 5

Definition 1 If Yn > 0 is always satisfied, then the maximum depth estimator
for θ of the AR process (3) is

θ̂(y0, . . . , yN ) = argmax
θ>0

dAR
T (θ, y0, . . . , yN ). (7)

Since the error En is given by En = V (tn) − V (tn−1) + hα0, we have
Yn ≥ Yn−1 ≥ a0 ≥ 0 for all n ∈ IN if

V (·) is a process with nonnegative increments,

Y0 = A(t0) = a0,

−hα0 ≤ θak0 = hα1a
k
0 ⇐⇒ α0 ≥ −α1a

k
0 . (8)

Besides the assumption (8), the condition that the median of En is zero
will be used here. This is in particular satisfied if the initial crack length a0 is
greater than zero so that α0 in condition (8) can be negative since θ = hα1 > 0
holds for a growth process. But a median of zero holds also if the distribution of
the increments V (tn)−V (tn−1) has zero median which is satisfied for example
by a Poisson process with small intensity parameter. Note that the step length
h should be small for a good Euler-Maruyama approximation of the process
A(·).

Theorem 1 If zero is the unique median of En and assumption (8) holds,
then the maximum depth estimator given in (7) is a consistent estimator of θ.

The proof is given in the Appendix.

2.2 Tests and conficence intervals

The distribution of tangential depth as well as for global depth is difficult to
derive. Since the simplicial depth is a U statistic, its asymptotic distribution
is in principal known. By extending the first definition by Liu (1988,1990) for
multivariate data, simplicial depth can be defined for any depth notion d as
follows:

dS(θ, y1, . . . , yN ) =
1(
N
q+1

)
∑

1≤n1<...<nq+1≤N

d(θ, yn1
, . . . , ynq+1

)

if the parameter θ is q dimensional (see Müller 2005). If the parameter θ is
one-dimensional and the depth notion d is the tangential depth dT given by a
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quality function Q it reduces to

dS(θ, y1, . . . , yN ) =
1(
N
2

) ♯
{
(n1, n2); n1 < n2 with

∂

∂θ
Q(θ, yn1

) ≤ 0,
∂

∂θ
Q(θ, yn2

) ≥ 0

or
∂

∂θ
Q(θ, yn1

) ≥ 0,
∂

∂θ
Q(θ, yn2

) ≤ 0

}

=
1(
N
2

)
N∑

n1=1

N∑

n2=n1+1

(
1

{
∂

∂θ
Q(θ, yn1

) ≥ 0

}
· 1

{
∂

∂θ
Q(θ, yn2

) ≤ 0

}

+ 1

{
∂

∂θ
Q(θ, yn1

) ≤ 0

}
· 1

{
∂

∂θ
Q(θ, yn2

) ≥ 0

})
.

This means for the quality function given by (4) using (5) for the AR process
given by (3)

dAR
S (θ, y0, . . . , yN )

=
1(
N
2

)
N∑

n1=1

N∑

n2=n1+1

(
1{yn1

− yn1−1 − θykn1−1 ≤ 0}

·1{yn2
− yn2−1 − θykn2−1 ≥ 0}

+ 1{yn1
− yn1−1 − θykn1−1 ≥ 0} · 1{yn2

− yn2−1 − θykn2−1 ≤ 0}
)
.

The following theorem is analogous to the asymptotic distributions of the
simplicial depth for regression with independent errors given by Müller (2005),
Wellmann et al. (2009), Wellmann and Müller (2010a,b).

Theorem 2 If the assumption (8) and P (En ≥ 0) = 1
2 = P (En ≤ 0) hold

and θ0 is the true parameter then

N

(
dAR
S (θ0, Y0, . . . , YN )− 1

2

)
N→∞−→ −1

2
(X2 − 1) =

1

2
− 1

2
X2

in distribution where X has a standard normal distribution.

As pointed out in Müller (2005), very general hypotheses concerning ar-
bitrary subsets Θ0 of the parameter space can be tested with the simplicial
depth.

Corollary 1 A test which rejects H0 : θ ∈ Θ0 if

sup
θ∈Θ0

N

(
dAR
S (θ, y0, . . . , yN )− 1

2

)
<

1

2
− 1

2
χ2
1(1− α),

where χ2
m(α) is the α quantile of the χ2 distribution with m degrees of freedom,

is asymptotically an α-level test for H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0.
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Applying the general test on Θ0 = {θ0} leads to confidence intervals.

Corollary 2 Θ̂ given by

Θ̂(y0, . . . , yN ) =

{
θ > 0; N

(
dAR
S (θ, y0, . . . , yN )− 1

2

)
≥ 1

2
− 1

2
χ2
1(1− α)

}

is an asymptotic confidence interval for level 1− α.

3 Simulations

3.1 Simulated processes

We consider here only the case k = 1, i.e. AR(1) processes defined by

Yn = (1 + θ)Yn−1 + Ei,n.

The following error distributions are used:

E1,n ∼ Gumbel(−36.6513, 100),

E2,n ∼ Poisson−Normal −Mixture(µ = 0, σ = 1, λ = 2/200),

E3,n ∼ Normal(0, 1),

E4,n ∼ Fréchet(10, 1.928,−2).

The choice of the parameters of the acentric Gumbel distribution ensures that
the error median is equal to 0 and the expected values are greater than 0. For
that we used that the Gumbel(α, β) distribution has median α − βln(ln(2))
and expected value α + βξ, where ξ is the Euler-Mascheroni constant. The
same argumentation holds for the Fréchet distribution with median ξ+ β

ln(2)
1
α

and expected value ξ+ βΓ (1− 1
α ). The Poisson-Normal mixture is defined by

Xn + Nn · s for Xn ∼ N(µ, σ2), Nn ∼ Pois(λ) and s a fixed jump size. This
model simulates independent and normally distributed errors contaminated
by jumps. Due to the small intensity of jumps, the median remains close to
0 in this case. All true parameters θ are set small enough to realize feasible
increases for long simulations. Since the results for Fréchet distributed errors
were similar to the Gumbel case we do not present the results of the simulation
with Fréchet distribution here.

In Figure 1, random paths relating to some processes are depicted. Alt-
hough theoretically a path of the used processes can be decreasing, this does
not really happen if the starting value is large enough as can be seen from
Figure 1.
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(a) Gumbel errors, θ = 0.002, a0 = 2500
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(b) Poisson-normal errors, θ = 0.001, a0 = 50

Fig. 1 Simulated paths of AR(1) processes with predefined error distributions

3.2 Test for explosive AR processes

The proposed test can be addressed to test for explosive AR(1) processes. For
this purpose we simulate AR(1) processes with fixed error distributions and
fixed growth parameters. The processes are then simulated M = 1000 times
with different series length Nk ∈ {100, 200, ..., 1900, 2000}. Then we apply the
derived test of H0 : θ = 0 with level 5 %. Even if convergency was only
proven for parameters larger than zero, we evaluate the boundary case here
because simulations indicate that the level is still kept. Figure 2 shows that the
relative number of simulations for which the parameter 0 is rejected increases
by an increasing series length. Hence the test offers the ability to test for
explosive processes by rejecting a parameter of 0 for large sample sizes. The
rate of rejection depends on the error distribution and the distance of the
true parameter to the boundary value 0. In our cases the Gumbel distribution
implies the slowest convergency of the rejection rate to 1. The Normal-Poisson
distribution implies the fastest convergency. In both cases we can conclude
that the test is consistent for θ > 0 in the sense that the power of the test
converges to 1 for growing sample size.
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Fig. 2 Rejections of H0 : θ = 0

3.3 Power functions

To illustrate the power of the proposed test a comparison with alternative
methods is used. For normally distributed errors and H0 : θ = θ0 Anderson
(1959) proposed the following test statistic in the explosive case (i.e. θ0 > 0),

TN (θ0) = (θ̂ − θ0)

√√√√
N∑

n=1

y2n−1,

where θ is estimated by

θ̂ =

∑N
n=1 ynyn−1∑N
n=1 y

2
n−1

− 1.

This test statistic has an approximate normal distribution with mean 0 and
variance σ2 under H0.

A simple alternative is the sign test studied by Huggins (1989) for AR
processes. Here it has the form

QN (θ0) =
N∑

n=1

sign(Yn − (1 + θ0)Yn−1) = 2(BN − N

2
),



10 Kustosz, Ch.P., Müller, Ch.H.

where BN has a binomial distribution with parameters N and 1
2 under

H0 : θ = θ0. Hence the sign test is an exact test.
In Figure 3 the comparison for a series length of 300 based on 1000 si-

mulated paths is presented. For all simulations with not normally distributed
errors, the starting value is set to a0 = 1.5. For the simulation with indepen-
dent and identical normally distributed errors, a starting value of a0 = 100
was selected. The reason is that in this case the simulated series are not neces-
sarily increasing due to negative errors and the estimates and tests therefore
do not reject parameters lower than 0 if the series cross the zero line. With
a high starting value this effect can be neglected. The following hypotheses
were used: H0 : θ = 0.002 for the Gumbel errors and H0 : θ = 0.001 for the
Poisson-normal errors and the normal errors. For all simulations, a level of 5%
was selected.

The power clearly depends on the error distribution. With normally distri-
buted errors, the test from Anderson performs slightly better than the other
two tests (see Figure 3(c)). This is not surprising because the known variance
is used. When the error distribution is not normal, this test fails completely,
while this is not the case for the simplical depth test and the sign test. The
simplical depth behaves similar to the sign test for normal errors (see Figure
3(c)), slightly better for Poisson-Normal errors (see Figure 3(b)) and quite
better than the sign test for θ < 0 with Gumbel errors (see Figure 3(a)). With
the selected starting values, the result for Gumbel errors is surprising because
the condition of strictly positive values does not hold for all simulated paths
in this case.
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Fig. 3 Power function for sample size 300
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4 Application on crack propagation data

Now the estimator is applied to data produced in fatigue experiments con-
ducted by Maurer and Heeke (2010). We consider the experiments TR01 and
TR02. Two identical concrete carriers were used for the experiments. Under
cyclical loading the crack width of a initial crack was observed. Figure 4 shows
the observed crack width in both experiments. Experiment TR01 differs from
experiment TR02 due to a higher maximum load applied in TR02. The depth
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Fig. 4 Experimental crack width data

estimation approach can be used to estimate a stable growth parameter of
the crack width series without influence from jumps in the data. Furthermore
confidence intervals for the parameter can be calculated.
The model for the crack width Yn, observed in discrete and equidistant time
n ∈ IN , is assumed to be

Yn = (1 + θ)Yn−1 + En.

The errors En are assumed to hold the conditions in Sections 1 and 2. Applied
to TR01 this assumption is not problematic. The residuals can be assumed to
be almost independent with respect to the autocorrelation function. However
the assumption of independent residuals can not be assured for TR02. This also
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holds if a robust version of the correlation coefficient is used. The robust au-
tocorrelation function surprisingly shows even more correlation. Nevertheless,

log(θ)

TR01 full

TR02 full

TR01 ph. 1

TR02 ph. 1

TR01 ph. 2

TR02 ph. 2

−10 −9 −8 −7 −6 −5

Fig. 5 Comparison of estimated parameters (•) and confidence intervals on a logarithmic
scale

the estimation reveals important properties of the series. We consider esti-
mates for the complete series and estimates for phases which visually imply
a different crack width progress, indicated in Figure 4 by the solid and dot-
ted lines. In Figure 5, the results of point estimation and confidence interval
estimation are presented.

From the confidence intervals, it is possible to conclude that the different
experimental conditions result in significantly differing growth parameters.
The growth parameter is bigger when a higher load is applied. Furthermore it
is possible to identify different parameter values among the phases with a low
and high jump frequency. The parameters significantly increase in the phase
of high jump activity.

5 Appendix

Proof of Theorem 1
Let be ǫ > 0 arbitrary and let be θ0 the underlying parameter. Let be B the
set of all ω so that the strong law of large numbers holds for
1
N

∑N
n=1 1{En(ω) ≥ 0}, 1

N

∑N
n=1 1{En(ω) ≤ 0}, 1

N

∑N
n=1 1{En(ω) ≥ ak0ǫ},

and 1
N

∑N
n=1 1{En(ω) ≤ −ak0ǫ}. Then it holds P (B) = 1. Now consider an

arbitrary ω ∈ B.
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We have to show that there exists N∗ ∈ IN such that
|θ̂(Y0(ω), . . . , YN (ω))− θ0| < ǫ for all N ≥ N∗.
Since med(E1) = 0 is unique, there exists δ > 0 such that

P (E1 ≤ −ak0ǫ) <
1

2
− 2 δ, P (E1 ≥ ak0ǫ) <

1

2
− 2 δ.

Because of the strong law of large numbers there exists N1 ∈ IN such that

1

N

N∑

n=1

1{En(ω) ≥ 0} > P (E1 ≥ 0)− δ ≥ 1

2
− δ,

1

N

N∑

n=1

1{En(ω) ≤ 0} > P (E1 ≥ 0)− δ ≥ 1

2
− δ,

1

N

N∑

n=1

1{En(ω) ≥ ak0ǫ} < P (E1 ≥ ak0ǫ) + δ <
1

2
− δ,

1

N

N∑

n=1

1{En(ω) ≤ −ak0ǫ} < P (E1 ≤ −ak0ǫ) + δ <
1

2
− δ

for all N ≥ N1. Then we have for all N ≥ N1

1

N

N∑

n=1

1{Yn(ω)− Yn−1(ω)− θ0Y
k
n−1 ≥ 0} =

1

N

N∑

n=1

1{En(ω) ≥ 0} > 1

2
− δ

and

1

N

N∑

n=1

1{Yn(ω)− Yn−1(ω)− θ0Y
k
n−1 ≤ 0} =

1

N

N∑

n=1

1{En(ω) ≤ 0} > 1

2
− δ

so that

dAR
T (θ0, Y0(ω), . . . , YN (ω)) >

1

2
− δ for all N ≥ N1. (9)

Now consider θ ≥ θ0 + ǫ. Then we have for all N ≥ N1 with Yn(ω) ≥ a0

1

N

N∑

n=1

1{Yn(ω)− Yn−1(ω)− θ Y k
n−1 ≥ 0}

=
1

N

N∑

n=1

1{En(ω) + (θ0 − θ)Y k
n−1 ≥ 0} =

1

N

N∑

n=1

1{En(ω) ≥ (θ − θ0)Y
k
n−1}

≤ 1

N

N∑

n=1

1{En(ω) ≥ (θ − θ0) a
k
0} ≤ 1

N

N∑

n=1

1{En(ω) ≥ ak0 ǫ} <
1

2
− δ.
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For θ ≤ θ0 − ǫ holds analogously for all N ≥ N1

1

N

N∑

n=1

1{Yn(ω)− Yn−1(ω)− θ Y k
n−1 ≤ 0} =

1

N

N∑

n=1

1{En(ω) ≤ (θ − θ0)Y
k
n−1}

≤ 1

N

N∑

n=1

1{En(ω) ≤ (θ − θ0) a
k
0} ≤ 1

N

N∑

n=1

1{En(ω) ≤ −ak0 ǫ} <
1

2
− δ.

Hence for θ with |θ − θ0| ≥ ǫ we have

dAR
T (θ, Y0(ω), . . . , YN (ω)) <

1

2
− δ for all N ≥ N1.

This means with (9) that only a θ with |θ−θ0| < ǫ can maximize dAR
T (·, Y0(ω), . . . , YN (ω)),

i.e. |θ̂(Y0(ω), . . . , YN (ω))− θ0| < ǫ for all N ≥ N1. 2

Proof of Theorem 2.
If θ0 is the true parameter then

Yn − Yn−1 − θ0Y
k
n−1 = En

for all n and the simplicial depth dS reduces to

dAR
S (θ0, Y0, . . . , YN )

=
1(
N
2

)
N∑

n1=1

N∑

n2=n1+1

(1{En1
≤ 0} · 1{En2

≥ 0}+ 1{En1
≥ 0} · 1{En2

≤ 0}) .

It is U statistic with the kernel function

ψ(e1, e2) = 1{e1 ≤ 0} · 1{e2 ≥ 0}+ 1{e1 ≥ 0} · 1{e2 ≤ 0}.

P (En ≥ 0) = 1
2 = P (En ≤ 0) implies P (En = 0) = 0. With the independence

of E1, E2 . . ., we obtain

E(ψ(E1, E2)|E1 = e1)

= 1{e1 ≤ 0} · P (E2 ≥ 0) + 1{e1 ≥ 0} · P (E2 ≤ 0)

= 1{e1 ≤ 0} · 1
2
+ 1{e1 ≥ 0} · 1

2
=

1

2

almost surely. Hence the simplicial depth dAR
S is a degenerated U statistic.

The spectral decomposition of ψ(e1, e2)− 1
2 is (see also Müller 2005)

ψ(e1, e2)−
1

2
= −1

2
ϕ(e1)ϕ(e2)

with ϕ(e) = 1{e ≤ 0}−1{e ≥ 0}. The theorem of Hoeffding (see Witting/Müller-
Funk 1995, Satz 7.183, p. 650 as well as p. 155) provides the assertion. 2
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Proof of Corollary 1.
For θ0 ∈ Θ0 we have

lim
N→∞

Pθ0

(
sup
θ∈Θ0

N

(
dAR
S (θ, Y0, . . . , YN )− 1

2

)
<

1

2
− 1

2
χ2
1(1− α)

)

≤ lim
N→∞

Pθ0

(
N

(
dAR
S (θ0, Y0, . . . , YN )− 1

2

)
<

1

2
− 1

2
χ2
1(1− α)

)

= P

(
−1

2
(X2 − 1) <

1

2
− 1

2
χ2
1(1− α)

)
= P (−X2 + 1 < 1− χ2

1(1− α))

= P (−X2 < −χ2
1(1− α)) = P (X2 > χ2

1(1− α)) = α. 2
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