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1. Introduction

The European Commission has set ambitious targets for the transportation sector. By
the year 2030, it aims to achieve a 30% modal shift away from road freight transport

towards more environmentally friendly and socially responsible modes of transportation

such as rail and inland waterways (Ambra et al., 2019). The commission has set an even
more substantial goal of achieving a 50% shift by the year 2050 (Ambra et al., 2019)). In

the complex web of the European supply chain and logistics industry, inland waterways

emerged as a pivotal player due to many factors, including cost-effectiveness, ecological

benefits and a reputation for reliability (Zwicklhuber and Kaufmann| 2023]).

The [CRISTAT] project, officially known as [The Climate Resilient and Environmentally]
[Sustainable Transport Infrastructure, with a Focus on Inland Waterways (CRISTAL

project team| (2022)), is a research initiative funded by the European Commission and

developed in collaboration with European union partners. The project aims to encour-

age freight transport on inland waterways. The [Fraunhofer Institute for Material flow|
land Logistics (Fraunhofer IML)[and other partners actively shape the project’s tra-

jectory as part of the consortium. This thesis is the data driven study of inland water

navigation within the [CRISTAT] project. It focuses on river depth forecasting using
machine learning algorithms through feature engineering of hydrological data, followed

by predictive analysis of navigational risk.

Within the [CRISTAT] project, the River Po in northern Italy offers significant opportu-
nities to support the supply chain and inland logistics corridor (CRISTAL project team,
2022). The potential navigable stretch of the Po River comprises shallow areas that,

under specific hydro-metric conditions, pose navigation risks. This navigable segment is

divided into branches with potential shallow points, also called critical points, that can
disrupt overall navigability. To facilitate effective navigation planning whilst consider-
ing logistical challenges, having a prediction model that provides timely and forecasted
information on river depth levels in each branch is necessary. Such a model ensures
accurate planning and holds promising potential for future advancements in the logistics

sector.

Over the previous three decades, the [Agenzia Interregionale del fiume Po Authority]|
[(AIPo)| (Interregional Agency of the Po River, 2011)), also a partner in the [CRISTAL

project, has identified critical shallow points along each branch of the navigable section

of the Po River. Continuous monitoring of hydrological information at these locations

involves measuring upstream water levels, river depths and river discharge flow rates.



This thesis focuses on three shallow points, namely Piacenza, Monte P.Te Revere and Ca-
vanella, each from a different branch by examining historical data from the last 10 years.
Additionally, daily records of climate data from Copernicus climate services (Hersbach
et al., 2023|) are sourced to identify the impact of climate attributes like total precipita-

tion, temperature and snow depth on shallow points.

The main objective of this thesis is to provide a proof of concept to establish the use of
inland navigation in River Po, a task highly dependent on monitoring water depth levels
at crucial river points. Various ship classes, determined by their draft lengths, rely on
specific water level thresholds (Kirilenko and Epifantsev], 2023). Utilising forecasted wa-
ter depth levels allows for calculating the likelihood of future navigation, optimising ship
scheduling and refining routing strategies. This process minimises delays and improves

the overall efficiency of corridor management.

This thesis focuses on advanced feature engineering, incorporating cross-correlation of

hydrological and climate attributes to assess their impact on shallow points. Various ma-

chine learning models, including [Long Short Term Memory (LSTM)| [Gated Recurrent|
[Unit (GRU)| [Long and Short term Time series Network (LSTNet)| and [Vector Auto Re-|
leression (VAR )| methods, are considered to forecast daily river depth levels over 14 days

and hourly water levels for the next 24 hours. The study explicitly addresses navigability
concerns for different types of ships by generating future estimates of water depth levels
at critical points. Furthermore, the probability of navigation risk for each ship class is
calculated using the best-performing model based on forecasted water depth levels. This
study presents a probabilistic approach to developing a proactive warning system that
can provide timely alerts. Such a system can significantly improve navigational planning

and safety in water transportation, benefiting logistics and related stakeholders.

1.1. Problem Statement

According to the [CRISTAT] project’s analysis, the Po River in north Italy is a vital wa-
terway with a crucial navigable section for efficient transport that connects the Mediter-
ranean Sea with the inland of Italy. The [AIPg| authority has divided the navigable
section into nine branches, namely Piacenza, Polesine Parmense, Casalmaggiore, Riva
di Suzzara, Revere, Felonica, Santa Maria Maddalena, Papozze and Volta Grimana (In-
terregional Agency of the Po River, 2011). There are 157 shallow points (see figure [1)
spread across the navigable branches. In 2022, Po River faced the heaviest drought sit-

uation in the past two centuries (see figure [2|) that is part of a long-term trend of more



frequent and severe drought in the area (Montanari et al. [2023). Because of climate

change and difficult hydrological conditions, each critical point poses unique challenges
to navigability due to potential record low water depth levels. According to the
it is nearly impossible to implement the navigation of ships with heavy cargo and long

draft length at these crucial points.
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Figure 1: Shallow points identified by the authority across navigable branches of
River Po in northern Italy (TRATTO’ in figure translates to navigational
branch).

Figure 2: Copernicus Sentinel-2 satellite images of the River Po Valley near Piacenza,
revealing significant river shrinkage between 2020 and 2022 (Drusch et al.

2012).

The [ATPq| authority recognises the importance of addressing navigational uncertainties
along waterways by proactively anticipating issues occurring from low water depth levels.
To achieve this, feature engineering on hydrological components that affect water depth
levels is necessary. Additionally, a predictive model needs to be developed to forecast
future water depth levels at specific points. The historical data collected by the [ATPq|
on river depth, river discharge rates and upstream water levels can be used to train the

model. This model can then be integrated with future river discharge rates from the

[European Flood Awareness System (EFAS)| (Copernicus Climate Change Service, [2019)




and the s existing water level estimation system (Interregional Agency of the Po
River, [2011) to predict future river depth accurately.

The water depth level is influenced by various atmospheric variables, including air tem-
perature, precipitation volume and snow depth (Atashi et al.l [2022). Recognising the
significance of these atmospheric factors, the feature engineering process will examine
hydrological components and map their influence based on a geometrical radius of impact
within the river catchment area. This approach aims to provide a subtle understand-
ing of how each component contributes to fluctuations in water depth level at shallow
points. Furthermore, the hydrological dynamics of river discharge and the accumulation
of sand sediment on riverbeds also notably impact the river depth at these shallow points
(Vezzoli et all |2015). Understanding and incorporating these factors into the predictive
model is crucial for a comprehensive and effective solution to the navigability challenges

faced along the Po River.

The work in this thesis contributes to the practical use of data science knowledge by
studying advanced machine learning algorithms to solve challenges in inland navigation.
Comparing the forecasting capabilities of machine learning techniques like LSTM] [GRU]
[LSTNet| and [VAR] for predicting water depth levels enables the identification of optimal

approaches for operational forecasting. By analysing the influence of key hydrological

components in river depth at specific locations along the River Po, the study estab-
lishes a foundation for predictive modelling. Furthermore, by assessing navigational
risk probabilities for different ship classes based on forecasted water depths, the thesis
demonstrates a practical application of data-driven decision-making in hydrology using
statistical knowledge. This interdisciplinary research advances state-of-the-art hydrolog-
ical modelling and provides actionable insights that can inform policy about enhancing

safety protocols and optimising navigation strategies.

1.2. Research Questions

This thesis aims to investigate and address the following research questions comprehen-

sively:

[RQ]L : How much do the different hydrological factors, such as river discharge rates, up-
stream water levels, precipitation, temperature and snow depth in the catchment
area, affect the daily variations in river depth at the three important shallow points

(Piacenza, Monte P.Te Revere, Cavanella) in the River Po?



: How well do machine learning algorithms like [LSTM] [GRU] [LSTNef| and [VAR]

predict daily and hourly water depth levels at three shallow points based on the

influential hydrological components identified in [RQJL?

RQB : What are the probabilities of navigational risk for different ship classes at the three
shallow points in the River Po, based on forecasted water depth levels using the

best-performing machine learning algorithm identified in [RQR?

1.3. Organisation of Thesis

The thesis is divided into ten sections, each with a specific purpose in presenting the
research and findings. The "Introduction" chapter [I| provides a brief overview of the
significance of this thesis work, followed by the problem statement, which explains the
existing challenges, objectives and the systematic approach of the study by framing re-
search questions. The "Background" section [2] outlines the author’s role and the impor-
tance of the work. The "Related Work" section [3] critically examines existing literature

on the research topic to identify gaps and establish the theoretical framework.

The section labelled "Dataset" ] provides an overview of the data utilised in this thesis.
It includes information on data collection methods, necessary processing and machine
learning model development preparation. The "Methodology" section [5| describes the
statistical techniques used in the study, including time series analysis, machine learning
approaches like RNN] and its types such as [LSTM] and [GRU], the hybrid method called
and a statistical approach named [VAR] It also explains how the models are

tuned for optimal performance and the evaluation metrics used in the study.

The "Feature Engineering of Hydrological Components' section [6] addresses [RQJL, de-
tailing the process of identifying influential components at shallow points through cross-

correlation analysis through graphs and explaining findings by setting inputs for [RQR.

The '[Exploratory Data Analysis (EDA)" section [7| checks the assumptions necessary for

time series analysis and extracts knowledge of spatial and temporal patterns required for
machine learning processes. The "Machine Learning Approach for River Depth Forecast-

ing" section [§ addresses RQR, providing a workflow overview of the forecasting approach
and delving into the design and training using [LSTM], [GRU], [LSTNet| and [VAR] models.

In the subsequent "Findings and Discussion" section [9] the forecasting results of the

models are presented through data visualisations and statistical analysis to determine
the most effective model based on evaluation metrics and cross-validation outcomes.

This chapter also addresses [RQB by explaining the probability approach that is used



to calculate the navigation risk of ships based on forecasted river depth by the best
model identified in RQR. Furthermore, the findings are discussed in detail, incorporat-
ing comparative analysis, considerations of limitations and validity and future scope of
importance. Additionally, this section outlines a recent publication resulting from this

research, highlighting the significance and potential contributions to the scientific field.

Finally, the "Summary" section [I0] concludes the key findings, discusses their broader
implications and suggests avenues for future research. Additionally, the thesis includes
appendices containing supplementary material, such as additional tables and figures used

in the analysis, further enhancing the comprehensiveness of the study presented.

2. Background

The [CRISTAT] project involves the development of various technological advancements
and digital solutions for transport infrastructure. The project is co-created by 15 part-
ners from 9 European countries, including Poland, Germany, Italy, Belgium, the Czech
Republic, Hungary, Greece, France and the [UK] Notably, the Po River in Italy is one
of the project’s pivotal sites in planning the navigation route and the governance pro-
cedures. The project aims to digitalise logistics and transport services, focusing on
increasing the effective utilisation of River Po’s water resources by planning navigabil-
ity. The outcomes of the project make substantial contributions to enhancing logistics

planning for sustainability and infrastructure resilience (CRISTAL project team), 2022).

As a partner of the [CRISTAT] project, [Fraunhofer IMT] represents Germany and is re-
sponsible for developing Digital Twin Technology for transport infrastructure. To study
River Po and its navigational feasibility, [Fraunhofer IMI]is closely associated with [talian]
[National Agency for New Technologies, Energy and Sustainable Economic Development]|
and the authority (Interregional Agency of the Po River} 2011). The au-
thor’s entitlement at the [Fraunhofer IMIlis as a student research assistant for machine
learning solutions and actively engaged in the CRISTAL project team| (2022).

The team at [Fraunhofer IML| focuses on developing geospatial solutions and visualis-

ing analytical aspects of river dynamics for navigation across European waterways. In
addition to that, this thesis introduces aspects of time to predict future water depth
levels using machine learning techniques based on hydrological aspects, intending to en-
hance navigability. This process contributes to the development of a warning system for
shallow points, serving as a dashboard tailored for various types of ships to facilitate

advanced logistics planning and prepare for extreme weather events.



3. Related Work

Water level prediction in rivers is pivotal in various domains, ranging from flood man-
agement to ensuring navigability (Ghimire, 2017). The complexity of this task becomes
particularly evident when considering rivers with unique geographical characteristics,
such as the Po River (Ravazzani et al., 2015)). In pursuing compelling water level predic-
tions, researchers have explored diverse methodologies and technologies to address the

multiple challenges rivers pose in different regions.

The Po River basin expands into two distinct regions: the Upper Po, encompassing 75%
of the area, sourcing the water drainage from mountainous tributaries that originate from
the Alps and the rest 25% of the area, distinguished by expansive, flat plains (Arttna
et al., 1990). Geographical properties of the River Po exhibit distinctive features that
significantly influence its hydrological dynamics (Montanari, [2012)). "River Research
and Applications" by (Castellarin et al.| (2011]) explains the effects of different floodplain
management in the Po River. Flood management techniques also consider hydrological
aspects in defining their objectives, which draws similarities to the analysis for water
depth level prediction regarding navigability (Castellarin et al., 2011). While flood
management studies contribute valuable insights, there exists a noticeable gap in the
literature concerning the explicit consideration of water depth level in the shallow points

of the Po River for navigability purposes.

In recent decades, adopting forecasting methods in hydrology and water resource man-
agement has seen significant attention, mainly by using machine learning techniques
(Atashi et al., [2022). Statistical models such as have been applied to predict
river discharge at two stations along the Schuylkill River, (Ghimire, 2017). Ad-
ditionally, multivariate time series models, such as [VAR] have been utilised to forecast
rainfall flow discharge in various locations, including Sojomerto, Juwero and Glapan in
Central Java Province, Indonesia (Hartini et al), 2015)). [ANN]| and [RNN]| have shown
effectiveness in hydrological tasks, including flood forecasting in the Red River, [USA]

(Atashi et all 2022) and estimation of water levels in Japanese rivers (Borwarnginn
et al. 2022). In addition, deep learning models such as the have been used to
forecast groundwater levels in the Qosagay plain, Iran (Lin et al., [2022). Similarly, the
hybrid approach, namely the model, showed prominent results when predicting
groundwater Levels in the Middle and Lower Reaches of the Heihe River in China (Yang
and Zhang, 2022). However, applying such techniques to the Po River, with its unique

geographical context, remains unexplored.



The review outlines the importance of water level predictions, particularly in the con-
text of the Po River and underscores the necessity of understanding its geographical at-
tributes. This work seeks to fill the research gap by combining insights from hydrological
studies and machine learning methodologies with a specific focus on the characteristics
of the River Po.

Following an extensive review of the literature and a comprehensive assessment, this
study integrates an approach, including such as the architecture and
its optimized variant, the[GRU] Additionally, a hybrid model called [LSTNef]is considered
to address existing gaps in research and explore new avenues for water level forecasting.
In contrast to that, a traditional statistical approach, [VAR] is included for comparative

analysis with deep learning methods.

4. Dataset

This study investigates the hydrological dynamics at shallow points along the River Po.
The primary objective is to explore the relationships between river depth at critical
shallow points and key hydrological components, including river discharge rates and
water levels at measuring station points. Additionally, the influence of climate data,
such as precipitation patterns, temperature variations and snow depth across the radius
of influence in the catchment area are measured. In the perspective of this thesis,
strategically, three individual shallow points, namely Piacenza, Monte P.Te Revere and
Cavanella (see figure [3|) that belong to the navigable branches of Piacenza, Revere and
Volta Grimana respectively, are considered. These specific locations serve as crucial

transit points between major inland ports and the connection to the Mediterranean Sea.

Piacenza Monte P Te. Revere Cavanella

¢ ¢ Q

Figure 3: Geographical locations of shallow points along the Po River considered within
the scope of this thesis.



The following sections will examine each dataset in detail, comprehensively analysing
the relationship between water depths and various hydrological and climatic factors.
This investigation aims to enhance the understanding of the factors controlling water

dynamics at selected shallow points in the River Po.

4.1. Data Components

Table [2] presents an overview of the data components utilised in this thesis, followed by

detailed descriptions of individual attributes that highlight their purpose and features.

Category Data Component Source | File format | Summary
Shallow water points ATPo Geo-Package| | Geographic information about
Geographical shallow water points.
Navigable section ATPo Geo-Package| | Geographic information about

the navigable branches along
the Po River.

Po river basin GRDC GeoJSON Geographic information of Po
River basin.
River depth AIPo CSV River depth recorded at a shal-
Hydrological low water point.
River discharge rates ATPo CSV River discharge rates at a shal-
low water point.

Water level ATPo API Upstream water levels at mon-
itoring point nearest to shallow
water point.

Temperature ECMWE NetCDF Temperature recorded 2m above

Climate of land, sea or inland waters in

a geographical grid.

Total precipitation ECMWE NetCDF Total precipitation recorded in a
geographical grid.

Snow depth ECMWEF NetCDF Depth of snow accumulated in a
geographical grid.

Logistics Ship classes ATPo CSV Category of ships classified
based on their draft length.

Table 2: Summary of data components sourced for the scope of this thesis.

4.1.1. Geographic Information of River Po

The [ATPo| Authority provided crucial geographic information on navigable branches
along the Po River (Interregional Agency of the Po River, [2011). Two |Geo-Package



files contain details about shallow water points and navigable sections (see table |3| and
. These files are processed using the geopandas package (Jordahl et al., 2020)) in a
Python 3.11.8 environment (Python Software Foundation, [2023)).

File for Shallow Water Points:

The file is 124 and consists of 157 records and five variables.

Variable Name Data Type Description
"NAME_LOCAL" String Names of each shallow point.
"CODE" Numeric Unique encoded values for identifying each shal-
low point.
"BRANCH" String Names of navigable branches where specific shal-
low points are located.
"Program_km" Numeric Distance from the origin of the river to shallow

point, measured in kilometres.

"geometry"

Geometry Array

Geographical coordinates in POINT format

(LAT| [LAT) object representing the location of

each shallow point.

Table 3: Description of variables stored in the |(Geo-Packagelfile for shallow water points.

File for Navigable Sections:

The file is 128 [KBl and consists of 9 records and three variables.

Variable Name Data Type Description
"BRANCH" String Names of navigable branches.
"Length" Numeric Length of branches in meters.
"geometry" Geometry Array | Geometrical coordinates in MULTILINESTRING

format (LAT||[LAT), representing the branches

along the Po River.

Table 4: Description of variables stored in the [Geo-Package| file for navigable branches.

Both files contain complete information and the data quality has been verified and
validated by the authority. The original variable names, initially in Italian, have
been translated into English for easier understanding. The data is intended for academic

and research purposes.
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|GeoJSONI File for the Po River Basin:

Additionally, for a comprehensive understanding of the Po River’s geography, a geo-
graphical information file in format for the entire Po River drainage basin
from the [GRDC]| (Federal Institute of Hydrology (BfG), [2020) is sourced. This file is

publicly open to download and information can be used for academic and research per-

spectives. This data enhances the comprehension of the river’s water catchment area
and the geometric influence on water collection into the river. Figure [ plotted using the
Folium library (Qiusheng Wu, 2021) in Python 3.11.8 environment (Python Software
[Foundation, 2023)), explains the River Po basin along with the water catchment areas

and drainage system into the river.
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Figure 4: Plot of the entire River Po basin in northern Italy and its water catchment
areas.

The mentioned data sets offer valuable insights into the Po River’s geography, providing

visual information on regions influencing shallow points and navigable branches.

4.1.2. Hydrological Components

River dynamics at shallow points are critical components in understanding the hydro-

logical characteristics of the Po River (Montanari, |2012). High discharge rates often lead

to increased river depth, indicating elevated water levels. Similarly, low discharge rates

may result in shallower river depths (Vezzoli et al., [2015). These attributes are crucial
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determinants in influencing the formation of shallow points within the river system, a
focal point of the study. By comprehensively understanding how discharge rates and
water levels influence water depth levels at critical shallow points in Po River, the aim

is to forecast these river depths from the navigability perspective.

River Depth

River depth at a water point refers to the distance from the water surface to the riverbed
at a specific location (Arttna et al.,[1990). Shallow water points are typically areas where
the river is relatively low and the riverbed is closer to the surface (Chow) [2017)). The
formation of sandbars and dunes due to sediment deposition can significantly alter the
morphology of the river channel, influencing patterns of depth. The accumulation of
sand and other sediments on the riverbed may lead to aggradation, which decreases
water depth (Mugade and Sapkale, 2015). This phenomenon can affect water flow and
navigation (Whitmeyer and FitzGerald, 2006). Understanding river depth dynamics
at these points is essential, as fluctuations can significantly impact navigation channel
depth and accessibility, posing risks to maritime activities (Whitmeyer and FitzGerald,
2006)). In this thesis, river depth at critical shallow points acts as a target variable,

resulting in outcomes that allow ships to transit safely within permissible thresholds.

River Discharge Rate

River discharge rate refers to the volume of water flowing through a river per unit of time,
often measured in cubic meters per second (m?/s) (Mazzetti et al., 2023|). The discharge
rates at a shallow water point provide insights into the overall flow dynamics, helping
to assess the water’s force and potential impact on the navigable branches (Kazimierski
et al.,2012). Monitoring discharge rates is crucial for understanding variations in shallow

water points, especially during different seasons or due to external influences.

Since 1988, the [ATPo authority has recorded and maintained crucial information related
to river discharge rates and river depth readings at shallow points in the Po River. For
this analysis, the authority has shared a file format (see table |5) (Interregional
Agency of the Po River, [2011). This file contains daily time series values encompassing
river discharge rates and river depth at each shallow point, as described in the accom-

panying [Geo-Package| file for shallow water points.

The dataset provided by the river authority is substantial, with a file size of 58.3 [MB]

The dataset is organised into two sheets: "1 set" and "2 set", each containing distinct
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sets of records. The first set encompasses Casalmaggiore, Felonica, Papozze, Piacenza,
Polesine Parmense and Revere branches. The second set includes shallow points within

branches like Revere, Riva di Suzzara, Santa Maria Maddalena and Volta Grimana.

Sheet "1 set" comprises 10,28,378 records and six columns. Sheet "2 set" contains 7,96,709
records organised into six columns. The columns in both sheets convey consistent infor-

mation, ensuring uniformity and facilitating ease of analysis.

Variable Name | Data Type | Description

"BRANCH" String Names of navigable branches.
"NAME" String Names of shallow points.
"HYDROMETER" String Nearby Hydrometer station responsible for mea-

suring water levels in perspective of navigability.
"DATE" Datetime | Date and time (DD-MM-YY HH:MM:SS format) for

which the value is recorded.

"DEPTH" Numeric River depth recorded in centimetres (cm) for a spe-

cific shallow point.

"DISCHARGE" Numeric River discharge rate recorded in cubic meters per

second (m?/s) for a specific shallow point.

Table 5: Description of variables stored in the dataset shared by the authority
related to river depth and river discharge rates.

This comprehensive dataset spans from 01 January 1988 to 12 May 2022 in daily fre-
quency, covering all recorded shallow points within the specified branches. The file’s
original variable names are initially in Italian and have been translated to English for

easier understanding.

Water Level

Accurate water level readings are crucial for ensuring navigability in river systems, par-
ticularly at critical points (Cuppini et al., 2015). The emphasis on water levels, rather
than depth alone, is motivated by the nature of vital points, where variations in sand
sedimentation play a central role in ensuring safe and effective navigation. Based on
strategic locations, water levels are measured using hydraulic gauges or scales to moni-
tor flood-related activities in the river (Castellarin et al., 2011)). In this thesis, the focus
on water level data is driven by its significance in unravelling complexities at critical

points along the River Po.
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Water level data in this thesis is collected through the [ATPo| authority’s dedicated [AP]]
accessed via their web servers (Interregional Agency of the Po River, 2011). This
is a comprehensive source, providing real-time and historical water level measurements
since 1988 for several known critical shallow points from existing sensors. By making
specific requests using the station identifier attribute of the process results in
historical water level data measured in meters for the defined period (see table [6] and
. These station identifiers are located near the described shallow water points within

the navigable branch, ensuring the collected data is linked to the relevant geographic

locations of interest.

Variable Name Data Type Description
"elementName" String Type of measurement (as per |API| request "Water level’)
"elementId" Numeric Unique identifier number for each station per the corre-
sponding element.
"stationName" String Unique name for each station.
"stationId" Datetime Unique identifier number for each station.
"lat" Numeric(decimal) | Geographical latitude location.
"lon" Numeric(decimal) | Geographical longitude location.
"decimals" Numeric Number of decimal value reading is rounded.
"measUnit" String Measurement unit in which data is measured in meters.
"time" Datetime Date and time (DD-MM-YY HH:MM:SS +1 format) for
which the value is recorded.
"value" Numeric(decimal) | Water level at a station for a specific time (only latest data)
"trend" Numeric(decimal) | Variation in current value compared to previous hour
recording.

Table 6: Description of variables obtained through an request for station identifiers.

The station identifiers required for water level reading are attained from the same [AP]]
web server (see table[f]) dedicated to all the river basins in Italy. For this analysis, only
details of the Po River basin are permitted. Upon request, a response with 14 records

describing station identifiers of water level corresponding to 11 variables is retrieved.

Another collects the historical water levels at a particular station (see table 7)) which
takes the corresponding "elementld" from the previous (see table [6]) of the unique

station and results in necessary information of variables.
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Variable Name Data Type Description
"o" Datetime Date and time (DD-MM-YY HH:MM:SS [UTC| +1

format) for which the value is recorded.

" Numeric(decimal) | Recorded Water level at a station for a spe-

cific time.

Table 7: Description of variables obtained through an request for historical water
level data.

The dataset encompasses a comprehensive record of measurements taken at the requested
station, with data points recorded every 30 minutes from 01 January 2001 to the present

day.

4.1.3. Climate Components

Climate changes can strongly impact rivers, leading to notable shifts in the availability of
water resources (Fiseha et al.,2014)). Navigating the complexities of the River Po requires
an in-depth exploration of the relationship between climate dynamics and water depth
levels, particularly at shallow points. According to studies, projections suggest that
summer river discharge rates in the Po River will decrease from 2040 to 2050 compared
to the baseline period of 2000 to 2010 (Ravazzani et al., [2015). This decline is linked to

a significant reduction in seasonal precipitation and an accelerated snow melt.

The focus extends beyond prediction to practical implications, offering navigators in-
sights into how climatic shifts influence river depth at shallow water points in the Po
River. The objective of this study is to investigate how critical climate factors such as
temperature, precipitation and snow depth affect the hydrological conditions of the River
Po. By explicitly analysing the features and calculating the impact period through cross-
correlation, this research aims to identify the influence of climate attributes at crucial

points.

The essential climate data utilised in this study is retrieved from the Copernicus Cli-
mate Data Storage (Hersbach et al., 2023)), derived from , the fifth generation
European Centre for Medium-Range Weather Forecasts (ECMWF) (2022)) tool, cover-
ing global climate and weather patterns over the past eight decades. Access to the data
is facilitated through a dedicated request to the Copernicus Climate Data Storage
(Hersbach et al., 2023). This dataset is generated under the framework of the|Copernicus
Climate Change Service (C3S) (2023). The data is available in a gridded format with
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a geographical resolution of 0.25° latitude by 0.25° longitude and a temporal resolution
of one hour. This thesis focuses on daily climate attributes, specifically temperature,
total precipitation and snow depth. The geographical subset of interest encompasses
the region within North 50°, West 0°, East 40° and South 20° latitudes and longitudes,
covering the Po River basin from 2013 to 2022. Due to resource limitations, three differ-
ent requests have been made for temperature (see table , total precipitation (see
table E[) and snow depth (see table attributes outputs are generated in for-
mat and accessed through xarray library (Hoyer and Hamman) 2017)) in Python 3.11.8

environment (Python Software Foundation) 2023)).

Temperature

In the Alpine region, the increasing temperatures have reduced over half of the glacier’s
volume since 1900 (Beniston, 2012). If global temperatures rise by 2-4°C, it is projected
that between 50% and 90% of the ice mass from mountain glaciers could vanish by the
close of this century (Beniston, |2012). In the context of the Po River, the simulation
results from the "Hydrological Model for Assessing Climate Change" by [Ravazzani et al.
(2015) exhibit an overestimation of monthly temperatures during winter and an un-
derestimation from late spring to the end of summer. This discrepancy in the actual
and simulated meteorological forecast leads to overestimating average monthly discharge
in March and April, while underestimations are followed in September, November and
December. The profound impact of temperature fluctuations on the Po River defines
the importance of incorporating temperature data in the context of river depth level

forecasting.

According to Copernicus Climate Data Storage (Copernicus Climate Change Service
(C3S),, 12023)), the "2m temperature" variable is the air temperature at 2m above the
surface of land, sea or inland waters. It is calculated by interpolating between the lowest

model level and the Earth’s surface, taking account of the atmospheric conditions.

When an request is made, the file named 2m_temperature.nc (Hersbach et al.,
2023)) is downloaded in [NetCDF| format. The file is 555.5 and contains 291,079,008

rows for four columns.
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Variable Name Data Type Description

"longitude" Numeric(decimal) | Geographical longitude location.
"latitude" Numeric(decimal) | Geographical latitude location.
"time" Datetime Date and time (DD-MM-YY HH:MM:SS format)

for which the value is recorded.

"t2m" Numeric(decimal) | Recorded temperature measured in units of

kelvin (K) for a specific time.

Table 8: Description of variables obtained through an request for temperature data.

Total Precipitation

Intense precipitation over the Alps in the Mediterranean region has drawn significant
attention concerning the Po River (Isotta et al. [2014). This focus is proved by the
recurrent incidence of destructive floods, which profoundly impact the river’s water
levels (Isotta et al., 2014). The annual average precipitation volume is recorded at
78 cm?, with 60% of this volume being converted into outflow at the closure section
of the Po River (Montanari, |2012). The hydrological characteristics of the Po River,
particularly concerning the flood regime, have been extensively studied (Montanari,
2012). However, despite these efforts, several significant questions persist regarding
the river’s hydrology. Analysing precipitation patterns is crucial for comprehensively
understanding water depth levels at critical shallow points along the river and estimating

navigation risk.

Copernicus Climate Data Storage (Copernicus Climate Change Service (C3S), [2023),
has stated the "Total precipitation" variable in their data source as the accumulated
liquid and frozen water, comprising rain, snow, sleet, hail, drizzle and any other forms
of water, that falls to the Earth’s surface and reach the ground over a specific period.

The units of this parameter are depth in metres of water equivalent.

The request resulted in file name 2m_Total_ PRECIPITATION.nc in format
(Hersbach et al., |2023). The file is 555.5 and contains 291,079,008 rows for four

columns.
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Variable Name Data Type Description

"longitude" Numeric(decimal) | Geographical longitude location.
"latitude" Numeric(decimal) | Geographical latitude location.
"time" Datetime Date and time (DD-MM-YY HH:MM:SS format)

for which the value is recorded.

"tp" Numeric(decimal) | Recorded total precipitation measured as

depth in metres of water equivalent for a spe-

cific time.

Table 9: Description of variables obtained through an request for total precipitation.

Snow Depth

Snow constitutes a predominant contributor to seasonal runoff in hydrological basins
(Dettinger and Cayanl, |1995)), such as the rivers originating from the Alpine region. It
is particularly evident when the snow-pack releases water during the spring and sum-
mer melt (Dettinger and Cayan, 1995). The Po River at Piacenza and Pontelagoscuro
exhibits changes in water level over seasonal patterns, featuring a minor peak in spring,
typically occurring towards the end of March. This phenomenon is likely attributed to
snow melting from mid-altitude mountains in the surrounding region (Montanari, 2012).
The timing and rate of snow melt can influence the volume and flow of water in rivers,
contributing to fluctuations in water levels. Therefore, understanding the patterns and

characteristics of snow melt is essential for accurate and reliable water level forecasting,

In Copernicus Climate Data Storage (Copernicus Climate Change Service (C3S), 2023)),
the variable "snow depth" is defined as the amount of snow covering a particular area in
a grid. It is measured in meters of water equivalent and represents the depth that the

water would reach if the snow melted and is evenly distributed over the entire grid.

The request resulted in file name snow_depth.nc in [NetCDEF| format (Hersbach
et al.l 2023). The file is 555.5 and contains 291,079,008 rows for four columns.

18



Variable Name Data Type Description

"longitude" Numeric(decimal) | Geographical longitude location.
"latitude" Numeric(decimal) | Geographical latitude location.
"time" Datetime Date and time (DD-MM-YY HH:MM:SS format)

for which the value is recorded.

"sd" Numeric(decimal) | Recorded snow depth measured as depth in

metres of water equivalent for a specific time.

Table 10: Description of variables obtained through an request for snow depth ac-
cumulation.

The climate data for all attributes originates from the Copernicus Climate Data Storage
(Copernicus Climate Change Service (C3S), 2023). This data is publicly accessible and
explicitly intended for academic and climate research purposes. The data quality is
closely monitored and validated regularly to ensure its accuracy and reliability, with

feedback loops established back to the data providers for continual quality assurance.

4.1.4. Ship Classes

This study uses a comprehensive dataset on various ship classes to investigate their
probability of navigation risk at particular shallow points, considering water depth level
readings and ship draft values. The ship class data is crucial for understanding the
composition and characteristics of the navigation in inland waterways. According to the
[ATPo| authority, ship classes are differentiated based on their draft values, representing
the vertical distance between the waterline and the deepest part of a ship’s hull, usually
measured at the midpoint of the vessel’s length (Kirilenko and Epifantsev, 2023). This
draft reading is crucial for maintaining the ship’s balance and ensuring safe navigation
(Kirilenko and Epifantsev 2023]).

In this thesis, ship draft data is pivotal in understanding the required water depth levels
at shallow points to navigate safely. By integrating forecasted water depth levels with
the necessary draft values, the aim is to calculate the probability of navigational risk
for specific ship classes. This approach enhances the understanding of the maritime
challenges at shallow points and contributes valuable insights to improve the overall

safety and efficiency of inland waterways navigation.

As part of the [CRISTAL| documentation (CRISTAL project team, [2022), ship classes

are categorised according to their draft measured in centimetres and cargo capacity
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measured in tons. The dataset, sourced from the project database, is stored in a[CSV]file
format (see table . This file is a valuable resource for the study, providing essential
information about the characteristics of different ship classes, which is vital for the

investigation into navigability at shallow points.

The file is 10 and contains the classification of classes based on draft measured in

centimetres and cargo weight measured in tons.

Class IV Class V
Draft [cm)]
From [ton] | To [ton] | From [ton] | To [ton]
140 370 620 790 880
160 700 750 960 1060
180 820 870 1130 1230
200 950 1000 1290 1410
220 980 1130 1460 1600
250 1280 1320 1720 1860

Table 11: Description of ship classes categorised by a draft length in centimetres and
cargo capacity in tons.

The data related to sand sedimentation, which studies such as|Whitmeyer and FitzGerald
(2006) and Mugade and Sapkale| (2015) suggest has a significant impact on river depth
at shallow points, is unavailable and cannot be provided by the authority for this
analysis due to technical difficulties. Alternative strategies for addressing this limitation

are discussed in detail in section [8.1]

4.2. Data Description

This thesis focuses on three strategically selected shallow points along the Po River:
Piacenza, Monte P.Te Revere and Cavanella. These points reside within the Piacenza,
Revere and Volta Grimana navigable segments as described in table The selection
aimes to obtain representative data for each navigable segment. Piacenza and Cavanella
lie at the ends of the navigable section, capturing potential variations in water depth due
to their starting and finishing positions. Monte P.Te Revere occupies a central location,

providing insight into conditions within the segment.
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Shallow point Segment Program km | Latitude | Longitude
Piacenza Piacenza 342.259 45.057632 | 9.709441
Monte P.Te Revere | Revere 523.660 45.055091 | 11.134256
Cavanella Volta Grimana | 630.987 45.019353 | 12.135474

Table 12: Critical shallow points examined in this thesis, along with their distances from
the origin river and corresponding geographical coordinates.

To determine the optimal upstream water level station for monitoring each shallow
point, the geographical coordinates of potential stations are acquired and the distances

are calculated using the Haversine formula. The findings are detailed in table

Shallow Point | Water Level Station | Distance (km)
Piacenza Piacenza 0.428
Cavanella Cavanella STAP 2.489

Monte P.Te Revere Revere SIAP 0.021

Table 13: Proximity distances in kilometres from each shallow point to the respective
upstream water level monitoring stations.

As outlined in section [4.1] the required river depth and discharge data for these points
are extracted from the file provided by the[ATPolauthority and upstream water level data
is sourced from [AP]| request. Upon consolidating this data, the descriptive statistics of
the unprocessed sourced data for each shallow point are presented in the table

Piacenza Monte P.Te Revere Cavanella

Depth (cm)  Discharge rates (m®/s)  Water level (cm) | Depth (cm) — Discharge rates (m®/s)  Water level (cm) | Depth (cm) —Discharge rates (m®/s)  Water level (cm)
Count 6170 6170 1165433 8455 8455 153648 11369 11369 314878
Mean 257.24 852.64 4232.46 448.18 1293.20 905.13 339.04 1448.78 574.57
Std 103.56 677.62 106.09 155.33 960.30 160.45 68.99 1037.50 74.03
Minimum 100.00 178.92 4058.00 140.00 218.07 571.00 170.00 0.00 266.00
25% 200.00 484.85 4169.00 350.00 721.95 802.00 300.00 834.8 7 529.00
Median 230.00 648.20 4203.00 410.00 990.24 869.00 340.00 1126.6 8 554.00
75% 290.00 968.85 4260.00 520.00 1541.49 976.00 350.00 1707.38 597.00
Maximum 980.00 7728.19 5846.00 1280.00 11752.20 1785.00 990.00 9516.62 976.00

Table 14: Descriptive statistics of raw data collected from all three shallow points.

The climate dataset, sourced from 2m_temperature.nc, 2m_Total PRECIPITATION.nc
and snow_depth.nc files, is consolidated into a single dataset based on geographical
coordinates. The climate data is merged using the Haversine formula with a radius of
influence set at 200 km from each shallow point. This consolidated dataset comprises

information from 131, 80 and 46 and weather locations from Piacenza, Monte P.Te
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Revere and Cavanella, shallow points, respectively. Each of these stations represents
geographical locations within the radius of the influence of the river catchment area.
These data frames encompass daily observations of temperature, precipitation and snow

depth spanning from 01 January 2013 to 31 December 2022 in daily frequency.
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Figure 5: Geographical map displaying considered weather data points (blue dots) within
the river catchment area, located within a 200 km radius from the shallow
points (represented by markers).

4.3. Data Refinement

The data refinement phase encompasses essential processes to ensure the quality and re-
liability of the dataset used in this study. It includes better data-cleaning procedures to
address inconsistencies, missing values, or outliers within the collected data. Addition-
ally, efforts are made to manage data variations using imputation techniques across all
attributes. By thoroughly refining the dataset through these procedures, it establishes
a robust foundation for accurate analysis and quality of results.

4.3.1. Missing Data

Although the raw data sourced appeared appropriate, initial analysis of the unprocessed
information revealed significant missing values across all attributes associated with each
shallow point. Notably, the Monte P.Te Revere point lacked complete river depth and
discharge data from 1988 to 1999, representing a substantial 48.5% gap. Similar patterns
are observed with Piacenza and Cavanella, where crucial river depth and discharge data
are absent for portions of 2004 and 2005 in Piacenza and 2019 to 2022 in Cavanella.
Further analysis revealed missing values related to all three critical shallow points in the

upstream water level data. In particular, Cavanella exhibits the highest proportion of
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missing entries at 24.33%, compared to 9.69% and 1.48% for Monte P.Te Revere and

Piacenza, respectively. Table [15| describes the complete information on missing data.

Shallow Point Variable Available Data Freq Total | Missing | Percentage
River Depth 2004-01-03 to 2022-05-11 | Daily 6170 535 8.67%
Piacenza River Discharge | 2004-01-03 to 2022-05-11 | Daily 6170 535 8.67%
Water Level 2006-01-01 to 2024-01-01 | 30 Min | 1183032 17600 1.48%
Monte River Depth 1988-01-01 to 2022-05-12 | Daily 8455 4097 48.45%
P.Te River Discharge | 1988-01-01 to 2022-05-12 | Daily 8455 4097 48.45%
Revere Water Level 2009-04-15 to 2024-01-01 | 30 Min | 280018 27136 9.69%
River Depth 1988-01-01 to 2022-05-05 | Daily 11369 1176 10.34%
Cavanella River Discharge | 1988-01-01 to 2022-05-05 | Daily 11369 1176 10.34%
Water Level 2002-04-10 to 2024-01-01 | 30 Min | 415348 101090 24.33%

Table 15: Details on missing data in the raw dataset for river depth, river discharge rate
and water level variables at the selected shallow points.

Due to quality concerns, information regarding continuous missing data for river depth
and discharge at all three shallow points is excluded from the analysis. Instead, the
forward-fill method addresses missing values in intermittent data based on the
[Observation Carried Forward (LOCF) approach. This method replaces missing values

with the most recent valid data point, assuming no change during the missing period.
Given its 30-minute frequency, the forward fill method is again employed for water level
data. Here, missing values are substituted with the preceding valid data point, assuming

short-term stability in water level changes.

The consolidated climate dataset within the River Po basin is of high quality, with

complete and accurate information. There are no missing values or data inconsistencies.

4.3.2. Data Variation

Descriptive statistics from the raw dataset (see table reveal significant variability
in water depth, discharge rates and water levels data collected from three locations.
Notable differences are observed in the values between the present day and its preceding
day at each location, as described in the accompanying graphs (see figures @ and .
Both artificial and natural morphological factors influence these variations. For instance,
Piacenza exhibits a shallower range of depth measurements (100 cm to 980 cm) compared
to Monte P.Te Revere (140 cm to 1280 cm) and Cavanella (170 cm to 990 cm). Similarly,
the standard deviation of discharge rates is notably higher for Cavanella (1037.50 m?/s)
compared to Piacenza (677.62 m?/s) and Monte P.Te Revere (960.30 m?/s), indicating
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more significant variability in flow rates at shallow points. These findings underscore
the importance of understanding data variability in hydrological analysis, as it influences

feature engineering and the quality of forecasting results.
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Figure 6: Plot explaining the data variation observed across different components in the
Piacenza dataset.
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Figure 7: Plot explaining the data variation observed across different components in the
Monte P.Te Revere dataset.
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Figure 8: Plot explaining the data variation observed across different components in the
Cavanella dataset.

In the quality analysis of hydrological data, variability is standardised and managed
through imputation techniques. Specifically, when the variation in river depth exceeds
200 cm with the preceding day, the data is imputed with values from the previous day.

Similarly, for discharge rates, if the change exceeds 1000 m?/s, imputation methods are
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applied to address the variability. Additionally, in the case of water level fluctuations
exceeding 100 c¢m, imputation techniques are employed to ensure data consistency and
reliability. These standardised procedures to address variability ensure the integrity and

precision of the hydrological dataset, facilitating robust analysis for forecasting.

4.4. Data Integration and Preparation

In preparation for daily and hourly time series forecasting, the initial step involves
resampling the 30-minute water level data by averaging values into daily intervals and
hourly intervals to match the temporal granularity of the depth and discharge data.
Concurrently, the daily depth and discharge data are linearly interpolated to create
hourly data points, ensuring a consistent temporal resolution across all variables. This
process entailed aggregating the 30-minute measurements to calculate daily averages or
totals. Subsequently, individual consolidated data frames are created for hourly and
daily analysis, containing the interpolated hourly depth and discharge data and the
resampled water level data. These consolidated data frames provide a comprehensive
dataset suitable for time series forecasting at hourly and daily intervals, enabling the
application of appropriate forecasting models and techniques to derive insights and make

informed decisions.

In the context of climate data and considering the geographic characteristics of the Po
River’s catchment area detailed in section the GeoJSON file outlines the geological
boundaries of the Po River basin. This information is utilised to consolidate a unified
dataset comprising temperature, total precipitation and snow depth. This dataset is fil-
tered and restructured based on geographical coordinates to encompass all three shallow

points within the basin’s territory.

5. Methodology

In this section, the in-depth discussion of the methodology includes time series anal-
ysis approaches like stationarity testing, seasonal decomposition and auto correlation
functions to validate assumptions for the time series data. Various functional machine
learning algorithms like [ANN] [RNN] and [CNN]| are discussed, and differences among
[LSTM]| [GRU| [LSTNet] and [VAR] models are explained in detail from a multivariate time

series forecasting point of view. Finally, the tuning approach and evaluation metric are

discussed in detail and applied in the study. The motive behind selecting the statisti-
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cal methods are thoroughly explained, emphasising their alignment with the research

questions.

5.1. Time Series Analysis

Referring to the data described in the section [d] aside from the geographical information
of the case study, the fundamental nature of the data of hydrological variables is time

series data.

According to Brockwell and Davis (1991), a time series is typically defined as a family
of random variables (RV’s) that can be real-valued (R), vector-valued in R, or even
complex-valued (C), denoted as X;,t € T. The index set T can be the set of natural
numbers (N) or the set of integers (Z). This collection is called a time series or a time
series process. This section contributes to the necessary methods utilised to analyse the

time series data.

5.1.1. Stationarity

Understanding the behaviour of time-series data is a primary procedure to gain insights
into the nature of data. Stationarity is a fundamental concept in time series analysis,
playing a crucial role in understanding temporal patterns in data. A time series is
considered stationary when its key statistical characteristics, such as mean, variance or

auto correlation, remain consistent and do not vary with time (Witt et al., |[1998).

According to Brockwell and Davis| (1991}, def 1.3.2), stationarity is defined as time series
{X¢,t € Z}, with the index set Z = {0,+1,+2,...}, is said to be stationary if:

1. E[Xy]=pforallteZ,
2. BE|X;]? < oo for all t € Z, and

3. vx(r,s) =yx(r+t,s+t) forallrs,teZ.

Where E[X;] = p as expectation; E|X;|? as variance and the auto covariance func-
tion vx(r,s) of {X;} is defined by yx(r,s) = Cov(X,, Xs) = E[(X, — E[X,])(Xs —
E[X,])], r,s € Z for the series (Brockwell and Davis| 1991, p.12).
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5.1.2. Augmented Dickey Fuller (ADF) Test

The stationarity of a time series plays a crucial role in shaping its properties and fore-
casting its behaviour. Failing to transform a time series into the appropriate form of
stationarity can lead to misleading results (Greunen et al., |2014). Testing the stationar-
ity of the data is necessary to identify underlying patterns and meaningful trends. The
[ADF| is a statistical approach that helps determine whether the data is stationary. In
this methodology, the [ADF] test is considered optimal due to its wide recognition as a

valuable tool to check stationarity in time series data (Shumway and Stoffer, [2017)).

According to |Ajewole et al. (2020]), the unit root test sets the foundation for the m
test, which is performed based on a first order autoregressive AR(1) process. The goal
is to eliminate dependence between the current value and its lagged value, which can

indicate the series has a unit root.

Based on the equation defined by |Ajewole et al.| (2020), the relation between current

value x; at time ¢ and its last lagged value x;_1 an be represented as:

Ty = (Z).Tt_l + wy (1)

Here z; is the observation of the current value at time ¢, x;_1 as the last value with
time ¢t — 1, ¢ is the autoregression coefficient and w; as white noise in the time series.
In the perspective of the unit root test, the time series x; converges to a stationary time
series as t — oo, if |¢| < 1. This condition ensures that the series stabilises over time
and its statistical properties, such as mean and variance remain constant. Conversely, if
|p| > 1, the series x; is not stationary and its variance becomes time dependent. A value
of |¢| = 1 indicates the presence of a unit root, leading to a non-stationary (Ajewole
et al., 2020).

Equation [1| reformed as differenced autoregressive AR(1) process with equation Az, =

0x¢_1 4+ we, where Axy is xy — 241 and 6 is ¢ — 1 which acts a basis for unit root test in

[ADFL

The [ADF] test involves evaluating the stationarity of a time series using [ARTMA] process,
which typically includes additional terms such as a constant, trend and moving average
components to comprehensively analyse the time series dynamics (Ajewole et al., [2020]).

The [ADEF] test involves checking and testing based on the following equation:
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p
Axy = a+ ot + )\_1$t71 + Z ﬁjtijtfj + wy (2)
j=1

Where a represents the constant term or intercept, dt represents a linear trend compo-
nent with & as the coefficient of time ¢, A"*x;_; is the autoregressive (AR) component
with A\~! as the coefficient of the lagged value z;_1, Z?Zl BjtjAx;_; represents the mov-
ing average component of the model, where 3; as coefficients for the lagged differenced

terms Awx;_; up to order p (Ajewole et al., 2020).

According to statistical testing methodology from [Mushtaq (2011) and |Ajewole et al.
(2020), the procedure involves formulating the null hypothesis Hy when autoregressive
coefficient ¢ = 1 indicating a unit root and non-stationarity with the alternative hy-

pothesis H; when ¢ < 1 suggesting stationarity and is stated as:

Hy:9p=1 vs Hi:¢p<1 (3)

The [ADF] test generates a test statistic based on estimated values of constant term «,
linear trend coefficient §, autoregressive coefficient A, and moving average coefficient f.
The test statistic is compared to appropriate critical values in the Dickey Fuller table
for decision making based on the significance level. If the test statistic is below the
critical value, the null hypothesis of non-stationarity is rejected, indicating stationarity.
Conversely, if the test statistic exceeds the critical value, the null hypothesis cannot be
rejected, suggesting non-stationarity. This process provides a robust means to evaluate
the stationarity of a time series based on test results (Ajewole et al., [2020).

5.1.3. Seasonal Decompose

The initial step in time series analysis involves plotting the data for visual analysis. If
discontinuities, such as changes in level, are observed in the series, it helps to improve
the analysis by partitioning the series into homogeneous segments (Brockwell and Davis,
1991). This methodology aims to facilitate a clearer understanding of the underlying

patterns and variations in the time series data.

As per Montgomery et al. (2011, p.42), the additive decompose method is the fun-

damental approach to breaking down a time series into seasonal, trend and residual
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components. For a time series X;,t € T with x; observations at time period t =1,2,.. .,

the additive model is expressed as:

=St + L+ ¢ (4)

Where S; = Sips = Siqos = ... fort =1,...,s — 1, t,s € T with s as a length of the
period of cycles, L; = [y + Pit represent the linear trend component with £y, 51 as
coefficients of time ¢ and ¢; represents residual component which is uncorrelated with

mean 0 and constant variance (Montgomery et al.l 2011, p.210).

In this thesis, the additive model is chosen based on stationarity analysis, as it is suitable

when the magnitude of the seasonal variation does not vary over time.

5.1.4. Sample Auto Correlation Function (ACF)

In terms of data knowledge exploration, understanding the presence of patterns or depen-
dencies within the time series and any cyclic behaviour over the period to be addressed.
Auto correlation is a valuable approach to exploring and analysing time series data. It
helps to indicate the degree of similarity between a time series and a delayed version of
itself (Montgomery et al., 2011]).

According to Montgomery et al|(2011), If a time series is stationary, it implies that the
joint probability distribution of any two observations, x; and x4, remains constant for
any two time periods t and t 4+ h separated by the lag h. This condition allows for the

satisfaction of the assumption underlying the sample autocorrelation function.

As per Shumway and Stoffer| (2017, def 1.15), the sample auto correlation function has
a sampling distribution that allows to assess whether the data comes from a completely
random source. The correlation between a sample time series X; and its lagged values can
be calculated using the sample auto correlation function. The sample auto correlation

function denoted as p(h) of a stationary process can be expressed as:
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Here p(h) is the correlation coefficient. Where ~y(h) = %Z?:_lh (x4en — @) (xy — ) is
the auto-covariance for the observations x; and z;45, at time ¢ = 1,...,n and for lag
h=0,1,...,n— 1. T is the mean of all observations and also y(—h) = 7(h), for lag h.
Auto correlation coefficient p(h) lies in range of —1 < p(h) < 1 and p(h = 0) = 1 by
definition. When plotted, auto correlation is interpreted by observing decay or spikes at
specific lags. These patterns indicate auto-regressive behaviours or seasonality within

the time series (Shumway and Stoffer] 2017)).

5.1.5. Partial Auto Correlation Function (PACF)

The partial auto correlation function is similar to the sample auto correlation function.
For deeper understanding within the time series, the partial auto correlation function
considers only the direct correlation at each lag after removing the correlations explained
by the intermediate lags (Shumway and Stoffer, 2017, p.105).

As per [Shumway and Stoffer| (2017, def 3.9), the partial auto correlation function of a
stationary time series X; with observation x; and x4, for time t = 1,2,...,n and for
lag h. The [PACF|is denoted as ¢(hh) for h =1,2,...,n — 1 and is expressed as:

¢(hh) = corr(Tyih — Titn, Tt — Tt) (6)

Where ¢(hh) is the correlation coefficient between x;y; and z;, for h > 1 is the lag
and Zyyp, Ty being the mean of all observations of z;y, and x; respectively. Partial
auto correlation measures the correlation (corr) between x;.; and x; with eliminating
the linear connection of xy41,...,2415—1 . This is achieved by ;1 — Ziyp where the
deviation of z;1p from its mean Z,yj, indicating how much x4y varies from its average
value. Similarly, x; — Z; term represents the deviation of x; from its mean Z; (Shumway
and Stoffer, 2017, p.105).

In terms of interpretation, coefficient ¢(hh) ranges from —1 < ¢(hh) < 1. When
plotted, each significant spike in the [PACF] plot corresponds to the correlation between
the series at the current time point and the series at that specific lag, with the influence
of the intermediate lags removed. The lag values associated with these significant spikes
indicate the potential order of the auto-regressive component in the time series model.

The [PACEF] values also exhibit an exponential decay to zero after a certain lag. The
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point where these PACF|values become negligible explains the order of the autoregressive

component in the time series model (Shumway and Stoffer, 2017, p.160).

5.1.6. Cross Correlation Function

In the context of this thesis, the problem statement necessitates addressing multiple
variables within the dataset, highlighting the need for multivariate time series analysis.
It is crucial to look into the relationships between variables, highlighting the complex
interplay among various factors. The cross correlation is a valuable method to quantify
the metrics that identify the relationships between two variables. This approach enables
the interpretation of the underlying patterns and influential attributes, particularly con-

cerning model training and forecasting objectives (Shumway and Stoffer] 2017)).

The approach is similar to auto correlation, focusing on the lag feature. However, in
cross correlation, one attribute remains fixed and the lag of the other attribute is sys-
tematically shifted. This technique identifies and quantifies the effects based on the lag,

offering insights into the relationships between the two attributes over time.

Based on the notation defined in section and as per Shumway and Stoffer| (2017,
def 1.11), The cross correlation function denoted as p,y(h) of jointly stationary time
series(X)ien and (Yy)ien with observations z; and y; respectively for time ¢t =1,2,...,n

and for lag h is defined as:

2y (h)
’ (07 (0)

Where ~,,(h) is the cross covariance function and as per |[Shumway and Stoffer| (2017,
def 1.10) it is defined as :

cov(Terhs yt) = B [(@rrn = p12) (ye = p1y)] (8)
Here cov(xsyp, y:) calculates expectation value (or mean) for product of (415 — ps) and
(y+—pty). Where x4, is the observations at timet =1,2,...,nandlagh =1,2,...,n—1.

iy = E[xs1p] is the mean of all x4 observations and y; is the fixed observation at time

t=1,2,...,n and with mean p, = E[y].
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The cross correlation coefficient pg,(h) takes values between -1 and 1. It is not symmetric
about zero, meaning that pgy(h) # pzy(—h). This coeflicient provides valuable insights
into the relationship between two attributes, x;i and y;, over a specific lag h. The
correlation coefficient equals 1, which indicates a strong linear relationship between
the attributes. Conversely, a coefficient of -1 indicates a negative relationship, while 0

indicates no relationship (Shumway and Stoffer], 2017, p.26).

5.2. Time Series Forecasting

As described in section time series data contains information on real-time observa-
tions captured over different periods. This data, which is collected from past events (also
referred to as historical data), allows to identify trends, seasonality and cyclic temporal
patterns that occurred in the past and may also project similar behaviour in the future.
Based on the past observations, it is possible to predict future observations (Brockwell
and Davis, |1991]).

5.2.1. Multivariate Time Series and Forecasting

In a multivariate time series forecasting context, two or more variables containing his-

torical information are involved in forecasting future instances of a target variable.

According to Brockwell and Davis| (1991, def 11.1), a multivariate time series X; is

expressed in a vector form as:

th (X1t7"'7th)/ fort:O,:Izl,:I:Q,... (9)

Where Xq4,..., X, represents m individual components of the vector X; for the time
period t. In multivariate time series, the serial dependence of each component series
X, for i = 1,...,m and also the interdependence between different component series
X and X; are considered. To forecast X;.p, where h represents the desired forecasting
horizon ahead of the current timestamp ¢, it is assumed that (X, ..., Xye) are available
(Brockwell and Davis, [1991)).
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Artificial Neural Networks

The utilisation of is prevalent in the realm of time series forecasting (Atashi et al.,
2022)). These networks offer the advantage of linear and nonlinear modelling without

requiring prior information or assumptions about the correlation between input and out-

put variables. In multivariate time series forecasting, a[Multi Layer Perceptron (MLP )|is

a type of [ANN] that is structured with input, hidden and output layers accompanied by
an activation function connected in a finite acyclic graph. Through these layers, input
variables can be trained to predict upcoming instances of target variable (Hamzagebi
et al., 2009).

Based on the explanation from (Hamzagebi et al. 2009), the forecasting of future in-

stances is achieved by:

m k
Fg=oa+ > vif (Z w;ij X + 9j> (10)

j=1 i=1

In this formula, the variable X;_;, for (i = 1,2,...,k) represents previous observations
of the multivariate time series for the past k periods. The predictions for the current and
future n periods are denoted by Fyy;, where [ = 0,1,2,...,n. The term Zle wi; X
computes a weighted sum of values of the multivariate time series X; where weights of
connections from input layer neurons to hidden layer neurons are represented by w;;, for
i1=1,2,...,kand j = 1,2,...,m. The weights of connections from hidden-layer neurons
to output layer neurons are represented by vj;, for j = 1,2,...,m and [ = 0,2,...,n.
The weights of bias connections are denoted by «; and 60;, where | = 0,1,2,...,n and
j=1,2,...,m. Finally, f represents the activation function (Hamzacebi et al., 2009).
Based on the estimated weights and bias when trained on historical data, [MLP] network

can forecast future instances.

However, [ANNE such as [MLPk can effectively address specific tasks. Nevertheless, they
present some drawbacks when utilised for multivariate time series forecasting challenges.
One particularly challenging aspect is capturing long-term dependencies in sequential
time series, as treat each input as independent (Box et all [2015). Complex
designs with more neurons may also lead to overfitting and increased computational
costs. Such disadvantages led to the development of [CNN] and [RNN] which can handle
sequential modelling and efficient training (Yao et al., [2017).

33



Convolutional Neural Network (CNN|)

The possible alternative for traditional [ANNE is [Convolutional Neural Network (CNN))
(Yao et al., [2017). , a type of have gained popularity due to their success
in classification problems such as image recognition (Krizhevsky et al., 2012) and time
series classification (Wang et all [2016). The comprises a series of convolutional

layers. These layers are designed to only connect to local regions within the input data.

The connection is achieved by sliding a weight matrix and filter over the input data.
A dot product is computed between the input and filter at each point, essentially a
convolution. The structure enables the model to learn filters to identify specific patterns
in the input data. The [CNNk has an advantage over due to its convolutional
structure, which results in fewer trainable weights, making it more efficient for training
and predicting (Borovykh et al., 2018)).

According to |Lai et al.| (2018) and in the perspective of multivariate time series input

X;, the computation of a convolutional layer in a neural network is represented as:

hy, = ReLU( Wy, * Xy + bg) (11)

[CNN]use a convolution operation, denoted by *, where Wj,xX; represents the convolution
operation between the filter W} and the input X; for the time ¢t € T and by is a bias
which adds to output. The output of this operation is a vector and is represented as hy.
To ensure that each hj vector has a length of T', the input matrix X; is zero-padded to
the left (Lai et al., [2018]).

The convolutional layer contains multiple filters, each with a width of w and a height
of m (the same as the number of variables). Each filter moves across the input matrix
X; and the [ReLU]| function is applied to each element of the resulting vector. The [ReLU]
function is defined as [ReLU|(z) = max(0,z). The output matrix of the convolutional
layer has a size of d. x T, where d. is the number of filters used and T is the length of
the time series (Lai et al., 2018).

The output from all convolutional layers is represented as output matrix H and global
pooling is applied to summarise the learned features across all filters. These layers are
followed by a dense layer that learns to map the extracted features from the convolutional

layers to predict future values of the target variable (Lai et al., 2018)).
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Recurrent Neural Networks

are initially proposed by Elman| (1990) as a type of Unlike traditional ANNE
and [CNNE, incorporate an internal state, called the hidden state, to capture

temporal dependencies using recurrent connections in sequential data.

Based on the explanation from Hewamalage et al.| (2021)), basic is formulated as:

hy = U(Wi chi 1+ Vi-xe + bi) (12)
z¢ = tanh(W, - hy + b,) (13)

Where hy € R? represents the hidden state at time ¢ for d cell dimension; o denotes
sigmoid activation function, which generates the output between 0 and 1. W; € R4 s
the weight matrix for the recurrent connections for the previous hidden state h;_1. The
term z; € R™ ( where x; € X, for multivariate with m size of the input) is the input for
the cell with V; € R4*™ ag weight matrix. The b; € R? denotes the bias vector for the
hidden state h;. Likewise, z; € R™ represents output of the cell at time step t for the
result from tanh as activation function with W, € R%*? signify the weight matrix for the
h¢ hidden state at time ¢ for d cell dimension and b, € R? signify the bias vector of the cell
output. The current hidden state depends on the hidden state of the previous time step
and the current input. After training the model, the last known input-output sequence
from the training set iteratively predicts future outputs by feeding the predicted output
z; back into the model as the following input x;4; (Hewamalage et al., |[2021)).

However, difficulty capturing long-term dependencies because of the vanishing
gradient problem, where gradients diminish as they move back through time. This
restricts their effectiveness in tasks that require memory over long sequences. Since the
data used in this work depends on long term sequences, traditional [RNNE do not support
the current requirement. The [LSTM]| and [GRU] are types of [RNNk that overcome the
limitations of in capturing long-term dependencies (Yao et al., [2017)).

5.2.2. Long Short Term Memory (LSTM)

LSTM]| proposed by Hochreiter and Schmidhuber| (1997)), is a type of that has

been widely utilised for time series forecasting purposes and its success has led to its
adaptation in this thesis. Based on the tutorial for [LSTM]from [Staudemeyer and Morris
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(2019)), it is summarised as an artificial neuron cell with internal memory and consists
of three gates namely the input gate, the forget gate and the output gate. The previous
time’s output is considered input for the current time. The structure contains a loop
that repeats the same task for all data across the sequence of input vectors and the
output from the previous computation. This architecture enables to effectively
capture and retain information over extended sequences, making them well-suited for
tasks involving time series data. The mechanism allows to store or forget information
selectively. In this work, the sequence of historical time series is trained on an [LSTM]

architecture-based model to forecast future steps based on the previous sequence.

According to |Borwarnginn et al. (2022), the following equations describe the flow of
information through an cell at different time steps:

o(W; - [he—1, z¢] + b;)
o(Wy - [he—1,m¢] + by)
( o [Pe—1, @] + bo)

( o [he—1, 2] + be)

[ ®Ciq +i 0 Cy

o¢ © tanh(C})

Input gate (i
Forget gate (f;

Output gate (o

)
)
)
Candidate cell state (Ct)
)
) =

Updated cell state (Cy
Hidden state (hy

The provided equations describe the computations involved in the neural network’s cell
state and hidden state evolution. This process integrates the current input x;, the
previous hidden state h;—1 and the preceding cell state C;_1. These variables are crucial
in generating the new cell state Cy through the candidate cell state vector Cy. At the
same time, the hidden state h; is computed. The significance of weights W;, W, W,, W,
and biases b;, by, b, b. are essential throughout the calculations, particularly at the gates
and cell states. The input gate 7;, forget gate f; and output gate o, are computed using
the sigmoid function o, which is crucial for regulating information flow (Staudemeyer
and Morris, 2019).

The candidate cell state C; is determined through the hyperbolic tangent function tanh
and the updated cell state C} is a combination of the previous cell state and the can-
didate cell state, controlled by the input and forget gates. Finally, the hidden state
h: is generated by applying the output gate to the hyperbolic tangent of the updated
cell state. Prediction or forecasting can be achieved by passing the final hidden state
through additional layers or by applying a linear transformation, depending on the spe-

cific architecture and task of the network (Staudemeyer and Morris, 2019).
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For multivariate time series forecasting, the historical dataset x; € X; is divided into
sequences based on identified patterns in the EDA section [/l The first input sequence
initialises the cell’s hidden state hy and cell state Cy. Each element of the input
sequence is sequentially processed through the network. For each time step ¢, the updated

cell state Cy and hidden state h; are computed using the provided equations

The last historical data sequence is fed to the trained [LSTM] model to forecast future
values. The will use its learned parameters (weights W, Wy, W, W, and biases
bi,bs, bo,be) to update its internal states and generate predictions for each subsequent
time step. The predicted output h; at time ¢ is used to predict h;r; at the next time
step. This process is repeated to forecast multiple future time steps (Staudemeyer and
Morris, [2019)).

5.2.3. Gated Recurrent Unit (GRU)

The a type of introduced by |Cho et al. (2014a) distinguishes itself from
networks through its simplified structure, featuring only two gates namely reset
and update gates. These gates combine aspects of the input and forget gates found in
[LSTM] [GRU] has demonstrated notable performance in handling long sequences, proving
efficient and effective outcomes in time-series forecasting (Lin et al.,[2022)). In the context
of this thesis, [GRU| emerges as the preferred method due to its faster training times and
efficient results. Additionally, [GRU]is considered a potential alternative for time series
forecasting, providing a basis for comparing forecasted results against outcomes.
This choice allows for a research contribution regarding model comparison, specifically

in hydrological components like river depth forecasting.

According to (Cho et al. (2014b), the structure of is described in the following

equations:

Update gate (2

o(Wexy +ULhy—1 +b)
o(Wyxs + Uphi—1 + by)
tanh(Wyzy + Up (1 © he—1) + bp)
(1—2)Ohi1+20h

(15)

Candidate hidden state (h;

(2t)
Reset gate (r¢)
(fit)
Hidden state (h)

In the [GRU| the update gate z;, determined by applying the sigmoid function o to a
weighted sum of the input xz;, controls necessary information from the weighted sum

of the previous hidden state h;_1. This gate controls the amount of information from

37



the last hidden state h;—; to retain and how much of the candidate hidden state fzt to
incorporate into the new hidden state h;. The reset gate 4 helps in deciding which parts
of the past hidden state h;_1 to forget when computing the candidate hidden state hy.
Additionally, the candidate hidden state h; is computed based on the current input zy,
the reset gate r; and the previous hidden state h;—; (Cho et al. 2014al).

The update and reset gates are essential components of the [GRU| architecture, allowing
it to update and utilise information from the past selectively and the current input.
The network weight matrices and bias vectors indicated by (U, Uy, Uy), (W, W,., W)
and (b,,b,) are indeed parameters that are learned during the training phase through
back-propagation and optimisation. These parameters are crucial for the GRU|to adapt
and capture patterns in sequential data effectively (Cho et al., [2014a).

Similar to [LSTM] the final hidden state obtained after processing the input sequence
can be used to forecast the next observation in [GRU] This process is iterated using the
input variables of the last training sequence combined with the newly forecasted value

to predict the target feature for future observations.

5.2.4. Long and Short Term Temporal Network (LSTNet)

is a hybrid neural network architecture designed especially for time series fore-
casting. It is proficient at capturing both long term dependencies and short term patterns
in temporal data. Initially introduced by Lai et al.|(2018)), this architecture (see ﬁgure@[)
integrates a one-dimensional layer as described in for handling local patterns
and [RNN] layers [5.2.1] for capturing global patterns. Skip{RNN] connections facilitate
communication between these components, enabling the model to share information

between short-term and long-term representations seamlessly.

Recent empirical studies from |Yin et al.| (2019) underscore the superior forecasting ac-
curacy of compared to individual implementations of [CNN|and [RNN] A linear
component Auto-regressive (AR) is also incorporated into the model to over-
come the drawback of deep neural networks, i.e., the scale of outputs is not sensitive to
the scale of inputs. has been selected as an effective approach for forecasting
water levels due to its ability to capture both short-term and long-term patterns from
historical data. The capability of to handle missing attributes in forecasting

scenarios makes it a suitable choice for utilisation in this thesis.
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Figure 9: The architecture of the Long- and Short-term Time-series network (LSTNet),
as described in Lai et al.| (2018).

5.2.5. Vector Auto Regression (VAR)

[VAR] model is a statistical technique commonly employed to analyse multivariate time
series data to tackle forecasting problems. The approach utilised in this work is based
on the methodology proposed by for analysing economic time series.
The [VAR] model is a regression algorithm that studies the influence of two or more time
series variables on each other. It considers both the moving average and autoregressive
components of a time series, which can then be used to predict future observations in
the variables. In this analysis, is perfectly suitable for understanding complex systems

where variables interact based on the characteristics of the data.

According to the definition described by |Liitkepohl (2005, def 2.1.1) and the notation

used for multivariate time series in section X; for m different time series variables

that are observed at discrete time points (t = £1,£2,...). The[Vector Auto Regression|
model of order p, also known as [VAR|(p), can be expressed as follows:

Xi=v+ A X1 +AXi o4+ A X +uy (16)

Where X; = (X1g,..., Xm¢) | is a m x 1 multivariate time series vector for time ¢,
variables m and also (X;_1,X;_2,...,X;_,) are the lagged vectors of X;. The A; are
fixed m x m coefficient matrices, v = (v1,...,v) " is a fixed m x 1 vector of intercept
terms allowing for a possibly non zero mean E(X;). Additionally, u; = (uy, ..., Umt)

represents a m-dimensional white noise characterized by E(u;) = 0, E(wu/)) = %,
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and E(usu,

(Lutkepohl, 2005, p.31).

) = 0 for s # t. The covariance matrix ¥, is assumed to be non singular

Estimation of the coefficient Aq, Ag, .., A, is estimated using the maximum likelihood
estimate (MLE) or ordinary least squares (OLS) regression based on input data. Once
the model is estimated, it is used to forecast future values of the multivariate time series
by recursively applying the estimated coefficients. The forecast of the new period A is

described as:

Xi(h) =v+ A Xy (h— 1)+ - + A, X (h — p) (17)

The (p) model follows recursive calculation to forecast future observations in horizon
h. Prior known values of (X;(0), X;(—1),...,X¢(—p+1)) from historical data is used as
the input for equation Further, forecasted vector X;(h) for the time ¢ and horizon
h is computed using lagged vector X;(h — 1),...,X;(h — p). The process is recursively
performed by updating lagged vectors Xy(h—1),...,X(h—p) with the newly forecasted
values for the next iteration until the forecast horizon h (Lutkepohl, 2005, p.37).

5.3. Model Tuning

To optimise the performance and select optimal hyper-parameters for the Vanilla
model, the FLAML library, which stands for [Fast and Lightweight AutoML Library|
(FLAML)| (Wang et al., 2021)) is used in python 3.11.8 environment (Python Software
Foundation), 2023). This library efficiently explores the hyper-parameter search space.

[FLAMI] leverages the inherent structure of the hyper-parameter space, enabling it to
intelligently determine an optimised search order that balances computational cost and
prediction error. Given the constraints of the system’s computational resources, FLAMI]
streamlines the process of finding the best hyper-parameters for the model. This optimi-
sation ensures better performance and significantly reduces the training time, allowing

to predict results within a shorter time frame.

5.4. Evaluation Metrics

Evaluation metrics involve establishing criteria for measuring the performance or ef-
fectiveness of machine learning models. In this thesis, only one target value will be

forecasted by a model. To measure the difference between the actual value (split of
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original data) and the forecasted values (by models) or performance among the models,

the [Root Mean Square Error (RMSE)|is considered. It measures the average magnitude

of errors between predicted and actual values for each model. The [RMSE] is calculated

as the square root of an average squared error difference (Borwarnginn et al. 2022]).

As stated in |Borwarnginn et al.| (2022), the mathematical formulation of the [RMSH] is
given by:

RNGSE = \/ S (@i — &)
‘ h

In a multivariate time series context, where x;; represents the actual value of the target
variable X;; at time ¢, Z;; is the forecasted value of X;; by a model trained on historical
data from the time series X; and h is the number of forecasted time steps. The
serves as a critical performance metric based on calculated difference. A lower [RMSE]
signifies higher model accuracy, indicating that the model’s predictions closely align with

the actual observed values (Borwarnginn et al., [2022).

When considering the data outlined in data description [RMSE] values are calculated

in centimetres as the metric for river depth forecast.

6. Feature Engineering of Hydrological Components

In river depth forecasting, which mainly focuses on shallow points, identifying influen-
tial factors, such as water level, river discharge rates and climate variables, holds critical
importance. Based on studies described in the section it is assumed that hydro-
logical and climate attributes influence the river depth at critical points. To address
the research question [RQJL of the thesis, the feature engineering process is structured to

meet the specific requirements.

This section explains the significance of hydrological and climate attributes contribut-
ing to river depth data at shallow points such as Piacenza, Monte P.Te, Revere and
Cavanella. This study aims to uncover valuable insights by comprehensively exploring
the mutual relationship between these attributes, which involves calculating correlation
coefficients. These insights will facilitate understanding and mitigation of the impacts of
hydrological factors on river dynamics. For this study, scatter plots are generated using
the Plotly library (Plotly Technologies Inc., 2015) of Python 3.11.8 (Python Software

Foundation, 2023)), enabling visual inspection of the relationships between the attributes.
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6.1. Hydrological Components

To assess the effects of river discharge rates and upstream water levels on river depth
levels, the cross correlation method described in section [5.1.6] is performed with a lag
of 0. By aligning river depth with discharge and water level, the analysis captures the

instantaneous response of river depth to discharge and water level changes.

The correlation coefficient values provide valuable insights into the relationship between
river depth, river discharge rate and water level at the shallow points. From the scatter
plot (see figure , a correlation coefficient of 0.85 between river depth and river dis-
charge rate at the Piacenza station suggests a strong positive linear relationship. The
resultant correlation value indicates that changes in river discharge rates significantly
impact river depth and higher discharge rates generally correspond to increased river
depths. This association highlights the importance of considering river discharge dy-

namics when assessing variations in river depth.
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(a) River depth vs River dis- (b) River depth vs Water (c) Water level vs River dis-
charge rate level charge rate

Figure 10: Scatter plots show the daily frequency correlation analysis between variables
at the Piacenza shallow point.

Similarly, the correlation coefficient 0.89 between river depth levels and upstream water
levels at Piacenza (see figure reflects a strong positive correlation, implying that
water level fluctuations closely mirror river depth changes. This finding underscores
the direct influence of upstream water level variations on river depth, highlighting the

critical role of water level in predicting and managing river depth fluctuations.

Furthermore, the notably high correlation coefficient of 0.95 between water level and river
discharge rate at Piacenza (see figure [10c)) indicates a very strong positive relationship,
suggesting a close linkage between these two variables. It implies that changes in river

discharge rates have a pronounced effect on water levels, impacting river depth. Such
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a tight coupling between water level and river discharge rate underlines the dynamic
nature of river systems and the importance of understanding the complex interactions

between hydrological variables.
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Figure 11: Scatter plots show the daily frequency correlation analysis between variables
at the Monte P.Te Revere shallow point.

The consistency of these relationships across different stations, as evidenced by correla-
tion coefficients of 0.92 (see figure[I1a]), 0.95 (see figure and 0.96 (see figure at
Monte P.Te Revere. Similarly, correlation coefficients of 0.88 (see figure , 0.87 (see
figure and 0.95 (see figure at Cavanella, further emphasises the robustness of
the findings. In visual representations of scatter plots, Ordinary Least Squares (OLS)
regression lines (in red) capture the linear trend and show the direction, strength and
linearity of the relationship between variables. The steepness of the OLS regression line
reflects the strength of the relationship, with steeper slopes indicating stronger correla-
tions. However, it is essential to note minor deviations from the OLS line across all three
stations between depth and discharge. These deviations may arise from the imputation

methods used to handle missing values and natural or artificial hydrological fluctuations.

The observed consistency implies that the relationships between river depth, river dis-
charge rate and water level might not be confined to selected locations but assumes to
be apparent at other points along the river. Overall, the results suggest that changes
in river discharge rates and upstream water levels significantly influence river depth at
all three stations, with potential implications for developing a robust river depth-level

forecasting model.
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Figure 12: Scatter plots show the daily frequency correlation analysis between variables
at the Cavanella shallow point.

6.2. Climate Components

To investigate the correlation between climate factors and river depth, a systematic

approach is developed as follows:

The cross correlation analysis method, detailed in section [5.1.6] is applied with a lag
range from 0 to 365, representing the potential lag effects of up to one year. The
analysis examines the relationship between river depth at shallow points and the three
climate attributes within the radius of influence. For the cross correlation calculation,
the climate attributes are fixed and river depth values are shifted to identify the effect
of climate on river depth levels. The calculation is performed between three climate

attributes of each geometric location and river depth at a specific critical point.

This analysis focuses on identifying the strongest positive correlations between precip-
itation and river depth and determining the specific time lags that reflect when the
maximum impact occurs. Similarly, the strongest negative correlations between temper-
ature and snow depth variables. By examining these negative correlations, insights can
be gained into the effects of temperature and snow depth changes on river depth and

the time delays associated with these impacts.

The map in figure [13| displays the regions (highlighted in red) where the total precipi-
tation correlates with the river depth at Piacenza point (marked in blue). Additionally,
the map also demonstrates the impact observed across the river basin. Similarly, in the
perspective of Monte P.Te Revere (see figure [38| from the appendix), it is observed that

the total precipitation from different geographical regions impacts the river depth. Cor-
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responding correlation values and lags are identified to quantify this relationship. For
Cavanella (see figure [39| in the appendix), a similar analysis is conducted to assess the

impact of total precipitation on river depth.
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Figure 13: Map highlighting regions (in red ) with maximum cross correlation between
total precipitation and river depth with the Piacenza shallow point (in blue).

The results obtained through cross correlation analysis are sorted according to the high-
est to lowest correlation values for each geographical region. Specifically, the results
revealed that the Piacenza point showed the highest correlation values with a 3-day
lag (see table 27| in the appendix), while the Monte P.Te Revere (see table |30 in the
appendix) and Cavanella points (see table [33|in the appendix) exhibited the highest cor-
relation values with a 4-day lag for specific geographical regions. Notable correlations
for Piacenza include 0.465 (see figure from the river water catchment in the Graian
Alps mountains, which are situated west of Piacenza, with coordinates 45.25° latitude
and 8.0° longitude at 135.31 kilometres distant. Similarly, a correlation of 0.460 with
coordinates 45.25° latitude and 7.75° longitude, around 154.70 kilometres distant (see
table 27 in the appendix).
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Figure 14: Line chart displaying the cross correlation value for related lag between total
precipitation and river depth at Piacenza shallow point from most influencing
region.

Approximately 188.20 kilometres from Monte P.Te Revere, water originating from pre-
cipitation at the Apennines Mountains (45.25° latitude, 8.75° longitude) has a maximum
correlation value of 0.404 (see table [30|in the appendix) with the effect of 4 days. Sim-
ilarly, at nearby coordinates such as 45.0° latitude and 8.75° longitude, the maximum
correlation value is 0.391 with the same lag of 4 days (see table[30|in the appendix). Re-
garding Cavanella, noteworthy correlations include 0.219 from the southern Apennines
Mountains at coordinates 44.75° latitude and 10.0° longitude, roughly 170.88 kilometres
away and 0.217 from the northern Dolomite mountains at 44.75° latitude and 9.75° lon-
gitude, approximately 190.30 kilometres distant (see table [33|in the appendix). These
correlation values, alongside their respective distances and lag periods, offer insights into
the spatial and temporal dynamics of precipitation’s influence on river depth at shallow

points.

Looking at the results of temperature, the negative correlation of -0.127 (see figure
is observed between Piacenza and at coordinates 45.0° latitude and 8.0° longitude,
approximately 134.08 kilometres away (see table in the appendix). Similarly, at
44.5° latitude and 8.75° longitude, around 97.62 kilometres distant from Monte P.Te
Revere, a correlation of -0.127 is observed with a lag of 359 days (see table [31] in the
appendix). For Cavanella, correlations include -0.209 at coordinates 44.5° latitude and
8.75° longitude, approximately 198.05 kilometres away, with a lag of 361 days and -0.280
at 44.25° latitude and 10.75° longitude, approximately 139.05 kilometres distant, also
with a lag of 361 days (see table [34]in the appendix).
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Figure 15: Line chart displaying the cross correlation value for related lag between
temeprature and river depth at Piacenza shallow point from most influencing
region.

Upon reviewing the temperature results, nearly all selected geographical regions across
the Po River catchment area exhibit consistent outcomes (see tables and [34]in the
appendix). The cross correlation between temperature and shallow point depth ranges
from -0.127 to 0.2 across all regions. However, the results do not provide a clear impact
and the lag between 350 and 360 indicates that drawing conclusions may not be suitable.
Notably, there’s a minimal seasonal pattern observed. For instance, at Piacenza, where
the correlation value tends to spike for lags between 0 to 180 days and then declines

from 180 to 360 days, indicating the subtle relation with temperature and river depth

(see figure [15).
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Figure 16: Line chart displaying the cross correlation value for related lag between snow
accumulation and river depth at Piacenza shallow point from most influencing
region.
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Due to sparse measurement locations, the analysis found limited correlations between
river depth at all three critical points and snow accumulations at geographical coor-
dinates, especially in the Alpine mountain region. For instance, at coordinates 46.25°
latitude and 10.0° longitude, approximately 134.46 kilometres from the Piacenza point,
a correlation of -0.2607 with a lag of 360 days is observed (see table [29|in the appendix).
At Monte P.Te Revere (see table |32 in the appendix), the minimum correlation coeffi-
cient of -0.141 with snow accumulation over a lag period of 179 days is found to be at a
distance of 159.43 kilometres north at 46.25° latitude and 10.0° longitude. Around 120
km distant from the Cavanella point, a correlation of -0.1765 is observed at 45.5, 10.75
coordinates with a lag of 216 days (see table [35|in the appendix).

These findings explain the complex relationship between temperature, snow depth and
river depth dynamics. However, it is crucial to exercise caution when interpreting these
correlation values, as their relatively weak magnitudes may limit the conclusiveness of
the effects.

Overall, the analysis of cross correlation results across the three shallow points reveals
that precipitation alone makes only a slight difference, with the highest correlation
around 0.4, indicating a relatively modest relationship. Additionally, the lag period
helps define weather events and their temporal effects on shallow points, which is rele-
vant for navigating ships in shallow waters. The results suggest that other factors beyond
precipitation may influence the dynamics of the shallow points, revealing the system’s

complexity.

Furthermore, the examination of temperature and snow depth cross correlation results
indicates that their relationship with the selected shallow points is not evident enough to
consider them as influencing factors. However, climate attributes, especially temperature
and snow depth, may have some effect in reality. Still, based on available data, their
contribution to the dynamics of the shallow points appears to be relatively minor. From
a positive perspective, the findings lead to the interpretation that climate attributes

have some systematic behaviour on the shallow points.

Moreover, results from hydrological components like river discharge rates and upstream
water levels show significant correlations in the depth of river level at selected shallow
points. Further research considering additional factors and conducting a more com-
prehensive data analysis may provide a clearer understanding of the dynamics at play
in shallow waters. In this thesis, only river discharge rates and upstream water levels
are considered influential variables for further exploratory data analysis and river depth

forecasting in the context of multivariate time series forecasting.
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7. Exploratory Data Analysis (EDA)

[EDA] is an essential step in developing a machine learning model for river depth fore-
casting at shallow points, playing a crucial role in uncovering insights, patterns and
relationships within datasets (Chatfield, 1986)). This section explores temporal trends,
seasonal fluctuations and spatial patterns in upstream water levels, river discharge rates
and river depth data at shallow points. Exploring summary statistics, time series plots
and spatial visualisations aims to identify recurring patterns and behaviour for river
depth level forecasting. Insights derived from [EDA] contribute to selecting appropriate
forecasting techniques and parameter optimisation strategies, thereby enhancing model
performance and reliability (Chatfield, |1986)).

Building upon the feature engineering results discussed in section [6], which highlighted
the influence of hydrological variables like water level and river discharge rates on wa-
ter depth at shallow points, this study aims to understand deeper relations and further
validate the findings visually. Additionally, the aim is to verify the assumptions nec-
essary for multivariate time series forecasting, including stationarity, normality, trends,
seasonality, auto correlation and partial auto correlation across all three variables. This
analysis is based on data described in the preprocessing section [£.4] and is crucial for
developing robust forecasting models that contribute to improved river depth prediction

and ship navigability perspective.

7.1. Stationarity

The [ADF] test described in methods section [5.1.2]is employed using statsmodels library
(Seabold and Perktold) [2010) in Python 3.11.8 (Python Software Foundation, 2023
to assess the stationarity of water level, river discharge rates and river depth data at
Piacenza, Monte P.Te, Revere and Cavanella shallow points. The null hypothesis of
the [ADF] test is that the variable under consideration is non-stationary, meaning it
possesses a unit root. Conversely, the alternative hypothesis suggests that the variable

is stationary.

The results from table [16| explain p-values less than the conventional significance level of
0.05 or even 0.01 for all variables, providing strong evidence against the null hypothesis.
Therefore, the null hypothesis is rejected in favour of the alternative, indicating that the
statistical properties of the variables remain relatively constant over time, particularly

in terms of their mean and trend components. These findings are crucial for multivari-
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Attribute Piacenza | Monte P.Te Revere | Cavanella
River Depth 4.64 x 10713 1.43 x 10713 9.16 x 10710
River Discharge rate | 9.36 x 10714 3.63 x 10716 1.43 x 10716
Water level 2.58 x 10~ 8.58 x 10714 2.71 x 1072

Table 16: Results of p-values from the test for each attribute associated with all
three shallow points.

ate time series analysis, as they establish a solid foundation for further modelling and
forecasting efforts. However, the [ADF] test confirms stationarity and visual inspections
of the time series graphs and auto correlation plots complement these results to ensure
the absence of other underlying patterns or trends. Nonetheless, confirming stationarity
in the water level, river discharge rates and river depth data at three shallow points

underscores the reliability of subsequent analyses.

7.2. Normality

The data collected from all three shallow points exhibits a bell-shaped curve when plotted
in histograms (see figure , indicative of a normal distribution. This characteristic
bell curve suggests that the distribution of depth measurements at these points follows
a pattern commonly observed in datasets conforming to a normal distribution. The
symmetrical nature of the curves further supports that most depth values cluster around

the mean, with fewer occurrences of values at the extremes.
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Figure 17: Histogram illustrating the normal distribution of river depth values across all
three shallow points.
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7.3. Seasonal Decompose

Seasonal decomposition as described is applied to data using statsmodels library
(Seabold and Perktold, |2010) in Python 3.11.8 (Python Software Foundation) 2023) to
separate individual time series into its components, namely trend, seasonality for all

three shallow points.

7.3.1. Trends

To visually explore noticeable trends, the seasonal decomposition method with the addi-
tive model is used to study the water level, depth and discharge with a seasonal period of
180 days (6 months). The graphs project the trend component at the Piacenza shallow
point from 2010 to 2022 (see figure , at Monte P.Te Revere from 2014 to 2022 (see
figure and at Cavanella from 2010 to 2019 (see figure . Observing the strong
correlation among water level, depth and discharge from section [0 similar and identical
trends are observed across all three attributes at each shallow point (see figures
in the appendix). The results showed a slightly decreasing and non-linear trend across
all three river depth points (see figure .

Trend of River Depth at Piacenza Trend of River Depth at Revere Trend of River Depth at Cavanella
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Figure 18: Graphs show the trends of river depth levels across the years at three shallow
points.

Based on visual interpretation, between 2015 and 2017, the river depth levels at Piacenza
were relatively low, with the lowest point recorded in 2017. At Monte P.Te Revere, there
was a significant decline in river depth levels in 2015 and later in the years between 2018
and 2021, depth levels remained stable with minor fluctuations. Cavanella, located at
sea level, experiences fluctuations in river depth levels across the years, but a significant
drop was observed in 2017. The pattern across shallow points (except Cavanella due to
data unavailability) is downward from 2020 to 2022, with the lowest levels recorded in
2017 and 2022.
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7.3.2. Seasonality

Analysing the results from the seasonality component of the seasonal decomposition
process, a noticeable spike in the graph (see figure indicates a clear seasonal trend
for 180 days at the Piacenza shallow point. Similar observations are also noted at
other shallow points (see figures in the appendix). Box plots are generated by
grouping monthly data over the years to understand seasonality across specific months.
Upon visualising the box plots, for Piacenza (see figure , Monte P.Te Revere (see
figure and Cavanella (see figure , it is evident that shallow points experience
higher river depth, discharge and water levels in May, June, November and December.
Conversely, the lowest levels are observed in July and August, followed by January and
February. These findings suggest a consistent seasonal pattern in river depth, discharge

and water levels at the shallow points under consideration.

seasonal Component
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Figure 19: Results of the seasonality component derived from seasonal decomposition
method on river depth data at the Piacenza shallow point.
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Figure 20: Box Plots show the consolidated monthly distribution of river depth, river
discharge rates and water levels at Piacenza shallow point.
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Figure 21: Box Plots show the consolidated monthly distribution of river depth, river
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discharge rates and water levels at Monte P.Te Revere shallow point.
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Figure 22: Box Plots show the consolidated monthly distribution of river depth, river
discharge rates and water levels at Cavanella shallow point.

7.4. |ACF| and [PACFI Plots

The|Auto Correlation Function (ACF)|and the[Partial Auto Correlation Function (PACF)|
as described in sections and provides valuable insights into the temporal de-
pendencies within a time series dataset comprising depth, discharge and water level data
from all three shallow points. The [ACF| method is applied with a lag limit of 500 to ob-
serve long-term temporal patterns over the years. On the other hand, the PACE| method

is used with a lag limit of 30 to reflect short-term temporal patterns and consider optimal
sequence length as input to train RNN|models. The graphical representation of the [ACF]|
plots (see figure generated for river depth data reveals engaging patterns. A grad-
ual decline in correlation with increasing lag is observed until approximately 105 lags,
followed by a slight increase and cyclic behaviour every 180 lags, suggesting a seasonal

pattern from all three shallow points.
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Autocorrelation Plot at Piacenza Autocorrelation Plot at Monte P.Te Revere Autocorrelation Plot at Cavanella
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Figure 23: |Auto Correlation Function (ACF)|from river depth data at all three shallow
points.

Conversely, the partial auto correlation graphs show the direct relationship between
observations at specific lags after removing the influence of intermediate observations.
Notable spikes in partial auto correlation plots indicate direct dependencies between
observations. For instance, in the graph for Piacenza (see figure , a slight spike at
a lag of 13 is observed. In contrast, the [PACE| values are nearly close to zero and minor
spikes are noted at lag 6 for Monte P.Te Revere (see ﬁgure and Cavanella (see figure
, suggesting the chance of cyclic behaviour and temporal dependencies. These lag
patterns are valuable for training[RNN|models, as they help specify the sequence number
for forecasting future values based on the cyclic behaviour exhibited by the data.

Partial Autocorrelation Function (PACF) Plot at Piacenza Partial Autocorrelation (PACF) Plot at Monte P.Te Revere Partial Autocorrelation (PACF) Plot at Cavanella
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Figure 24: [Partial Auto Correlation Function (PACF)|from river depth data at all three
shallow points.

54



8. Machine Learning Approach for River Depth Forecasting

This section addresses by developing machine learning forecasting models based on
their functionality described in section for predicting water depth levels at critical

shallow points. The models leverage [LSTM] [GRU| [LSTNet] and [VAR] algorithms and

are structured from two temporal perspectives: daily and hourly. Strategies for design-

ing models are explained based on data characteristics, followed by dividing data into

training and testing sets.

8.1. Workflow

According to the problem statement described in section [I.I] in response to the [ATPd|
authority’s requirement, a strategic noble approach is proposed in this work involving
the development of two distinct forecasting models for each shallow point serving daily
and hourly predictions. The historical dataset compiled by the [ATPo] encompassing
river depth, discharge rates and upstream water levels, serves as the foundational data
for training these models. By leveraging this data, the models can be finely trained to

forecast the next occurrence precisely.

Moreover, to achieve the desired forecasting horizon of 14 days and 24 hours, the model
can be augmented by incorporating forthcoming river discharge rates from the [EFAS]|
(Copernicus Climate Change Service, [2019) and the [AIPq[s existing water level estima-
tion technology (Interregional Agency of the Po River, [2011)). The holds access to
[EFAS|data and monitors data populated from the EFAS|model and their own estimation
system. This integration complements the [ATP[s existing monitoring system, offering a
comprehensive solution for predicting water depth levels with heightened accuracy and

reliability.

Two models are developed to meet the forecasting requirements set by the [ATPo] The
daily forecasting model will utilise future river discharge rates from the [EFAS| and up-
stream water levels from the [ATPd[s estimation system to predict river depth levels at
specific shallow points over the next 14 days. This model will be trained using historical

data on river depth, discharge rates and water levels to ensure accurate predictions.

Given the lack of data regarding sand sedimentation at shallow points, along with in-
complete information on river depth and river discharge rates at hourly intervals, the
hourly forecasting model focuses on predicting water fluctuations in upstream water

level measurement stations. This strategy operates under the assumption that ships can
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navigate safely when water levels are elevated above ship draft length, particularly given
the proximity of the water level station to shallow points. The hourly forecasting model
also leverages the interdependence between river depth, discharge rates and upstream
water levels. By training on historical data, the model forecasts water levels for the
next 24 hours using interpolated river depth from the daily model and river discharge
rates from [EFAS| as input. These models collectively aim to provide comprehensive and

timely forecasts, contributing to the navigation scope.

In this thesis work, as a proof of concept, the forecasting models will exclusively utilise
historical data provided by the [AIPq| authority. Based on the forecast horizon, the
dataset is divided into training and testing subsets, assuming that future river discharge
rates from the [EFAS| and the [ATPo[s estimated upstream water levels align with the
testing dataset. This approach ensures the models are trained and evaluated using

relevant historical data aligned with the anticipated forecast scenarios.

Daily Forecasting Model

The first model (see ﬁgure is designed to forecast daily river depth using preprocessed
historical data of river discharge rates and upstream water levels as input variables and
river depth as the target variable. This model is trained on the input variables to learn

the behaviour of the target variable over time.

Inputs for forecasting

River Discharge Rate (EFAS)
Water level data (AIPO)

Training data tp
Historical Daily River Depth, Daily River ‘ ‘ Daily River Depth time series for the
Discharge Rate, Daily Water level time next 14 days
series

Daily forecasting model

Figure 25: Strategy employed for daily river depth forecasting, encompassing input vari-
ables, target variable and inputs for forecast.

The model employs an iterative approach to predict daily river depth for the next 14 days.

Initially, the model generates predictions based on the last sequence of input variables.
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The resulting prediction is then combined with input variables from the testing dataset
to forecast the next occurrence. Subsequently, this process is repeated by incorporating
the latest sequence of data to predict the river depth for the next day. This iterative
method continues until the 14-day forecasting horizon is achieved, allowing the model
to refine its predictions iteratively based on evolving input data. Using historical data
and resampled water levels enhances the model’s capability to capture variations in river

depth over time accurately.

Hourly Forecasting Model

The second model (see ﬁgure is dedicated to forecasting upstream hourly water levels.
It involves training with preprocessed historical river depth data and river discharge rates

at hourly intervals as input variables, with upstream water levels as the target variable.

The hourly forecasting model is structured to predict upstream water levels on an hourly
basis by utilising inputs such as river discharge rates from the [EFAS| forecast model and
river depth (derived from the outcomes of the first model and interpolated to hourly
intervals). Similar to the first model, the hourly model adopts an iterative approach
to forecast hourly upstream water levels for a 24-hour forecast horizon. This iterative
method involves generating predictions based on sequential input data, refining the fore-
casts iteratively to account for changing conditions and improving predictive accuracy

over the forecast period.

Inputs for forecasting

River depth (from daily forecast model and

interpolated to hourly)

Training data Output
Historical Hourly River Depth, Hourly ‘ - Hourly water level time series for the
River Discharge Rate, Hourly Water next 24 hours
level time series

Hourly forecasting model

Figure 26: Strategy employed for hourly upstream water level forecasting, encompassing
input variables, target variable and inputs for forecast.
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This approach is chosen based on the observation that utilising the original 30-minute
raw water level data frequency yields superior performance compared to interpolated
river depth data. Moreover, acknowledging the strong correlation between river depth
and water level, leveraging both variables enhances the model’s predictive capabilities
and ensures robust forecasting outcomes. By integrating interpolated data and input
parameters from the first model along with the existing forecast model for river discharge
rates, this second model aims to deliver detailed forecasts of water levels at shorter

intervals.

8.2. Data Preparation for Modeling

In this analysis, significant emphasis has been placed on partitioning historical data
to assess the performance of forecasting models, as described in figure The daily
and hourly datasets are segmented into training (80%) and validation (20%) sets. This
partitioning strategy facilitates the development and evaluation of forecasting models
specific to different temporal resolutions, ensuring robustness and accuracy in model

training and validation processes.

Preprocessed Daily Time series Data Preprocessed Hourly Timeseries Data

)
(
/

|

o Testing Data Testing Data
Training Data ini

Training Data (80%) ‘ Training Data (80%) ﬁ

(a) Daily data (b) Hourly Data

I

Figure 27: Train-test split strategy for the preprocessed daily and hourly dataset.

The training set is the foundation for model training, allowing algorithms to learn pat-
terns and relationships from historical data. Conversely, the validation set provides
an independent dataset to evaluate model performance, offering insights into how well
the trained models generalise to unseen data. Following this partitioning strategy, a
subsequent split as testing data reflected input from [EFAS| and the [ATPo[s estimation
model to compare forecasts over 14 days and 24 hours for daily and hourly perspectives,

respectively.
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Shallow Point Training Data Range | Total | Training| Validation | Testing Data Range | Testing
(80%) (20%) (forecast
in days)
Piacenza 2010-01-22 to 2021-10-23 | 4293 | 3435 858 2021-10-24 to 2021-11-06 | 14
Monte P.Te Revere | 2014-03-28 to 2022-10-28 | 2954 | 2363 591 2022-04-29 to 2022-05-12 | 14
Cavanella 2010-03-19 to 2019-01-13 | 3223 | 2578 645 2019-01-14 to 2019-01-27 | 14

Table 17: Summary of training and testing data split for shallow points with a daily
forecasting model.

Shallow Point Training Data Range | Total | Training| Validation | Testing Data Range Testing
(80%) (20%) (forecast
in hours)
Piacenza 2010-01-22 to 2021-10-23 | 103330 | 82664 20666 2021-11-05 to 2021-11-06 | 24
Monte P.Te Revere | 2014-03-28 to 2022-10-28 | 71185 | 56948 14237 2022-05-11 to 2022-05-12 | 24
Cavanella 2010-03-19 to 2019-01-13 | 77641 | 62112 15529 2019-01-26 to 2019-01-27 | 24

Table 18: Summary of training and testing data split for shallow points with hourly
forecasting model

Tables and detail the data split across the three shallow points, outlining the
specific training and testing data ranges for both daily and hourly time series. This rig-
orous evaluation period facilitates a forward looking assessment of the model’s predictive
capabilities across defined time horizons, enabling a thorough examination of forecast

accuracy and providing inputs for probability calculations in navigation planning.

A normalisation step is applied to prepare the data for model training using the Standard
Scaler function from the scikit-learn library (Pedregosa et all 2011). The process
ensures that input features and the target variable have a mean of 0 and a standard

deviation of 1, facilitating stable and consistent training across different datasets.

The sequences to train the model are generated using a sliding window approach, where
a fixed sequence length is defined. This sequence length is determined based on [PACF]
plots (see figure , which indicate the appropriate number of time steps needed to
capture relevant temporal patterns. For Piacenza, a sequence length of 13 is observed,
while Monte P.Te revere and Cavanella have a sequence length of 6 for daily points.
For hourly water level forecasting, a sequence length of 24 is considered. By extracting
sequences of this length from the dataset at each time step, input-output pairs are
formed, enabling the model to learn temporal dependencies effectively. Overall, defined

steps ensure the dataset is structured into sequences suitable for training sequence-based

models like [LSTM], [GRU| and [LSTNetl
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8.3. Model Training

The thesis considers various time series forecasting approaches, as described in section

encompassing different methodologies, including such as [LSTM] (see section
[5.2.2)) and [GRU| (see section [5.2.3)), along with a hybrid neural network named [LSTNet

(see section [5.2.4)) and a statistical approach known as (see section [5.2.5)). These

models are thoroughly investigated for both daily and hourly forecasting tasks and their
performance is evaluated using [RMSE] (see section , allowing for a comparative anal-

ysis of their forecasting accuracy.

During the model development process, various combinations of parameter values are
explored, including the number of layers, units and epochs, which are trained and eval-
uated. Through this exploration, it is determined that the architecture and training

configuration described for Vanilla [LSTM] (see table [L9), (see table [22)), [LSTNet
(see table and (see table achieved better and performance for the task.

The described architectures for [LSTM] [GRU| and [LSTNet| models are designed using
keras library of Tensor flow framework (Abadi et al., 2015) and executed using Python
3.11.8 (Python Software Foundation, 2023)).

Parameter Value

Input River Depth, Water level and River Discharge rate

Output Daily: River Depth; Hourly : Water level

Sequence number Daily: Piacenza (13), Monte P.Te Revere, Cavanella (6); Hourly: 24 (all three stations)
Dataset Distribution Structure | Training set (80%), Validation set (20%), Testing set ( last 14 days or 24 hours)
Activation Function Rectified linear unit dReLU}

Loss Function Mean Square Error (MSE)

Number of Epochs 50

Batch Size default (32)

Optimizer Adam

Model structure One bidirectional layer of |LSTM|1aycr with 50 units followed by a dense layer with 1 unit.

Table 19: Model configuration details of the Vanilla |LSTM]| network for time series fore-
casting.

Due to the higher training time for the Vanilla [LSTM| model, it is fine-tuned using
[FLAMT] tool as described in section for each shallow point on the daily dataset
to enhance its predictive performance. For the tuning objective, the minimum [RMSE]
value is considered as the tuning objective and the search space described in table

are considered:
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Tuning Objective Range
Number of [LSTM|Units | 10 to 128
Number of layers 1toh
Batch Size 6 to 256

Activation Function

Number of Epochs

Rectified linear unit 1} Hyperbolic tangent function (Tanh)
10 to 500

Table 20: Tuning variables and search space for optimising the Vanilla [LSTM)| model.

After exhaustive experimentation and parameter tuning and based on the results (see
tables in the appendix), the best configuration model with the least RMSE] for

the respective dataset is optimised with the following hyper-parameters:

Parameter Piacenza | Monte P.Te Revere | Cavanella

Activation Function | Tanh IRCLUI IR'OLUI

[LSTM|Units 64 109 122

Number of Layers 3 3 3

Number of Epochs | 339 11 192

Batch Size 6 179 53

Model structure Bi directional Three layers of |LSTM|based on above units with single dense layers as final Output

Table 21: Model configuration details of the tuned [LSTM| network for time series fore-

casting.

Due to limited computation resources, only the model is tuned using the [FLAMI]
tool. In the perspective of (see table 22), [LSTNet] (see table and (see

table models, standard model architecture with custom configuration are considered,
which are inspired by works of [Lin et al.| (2022)), [Yang and Zhang| (2022) and Hartini
et al.[ (2015) respectively.

Parameter Value
Input River Depth, Water level and River Discharge rate
Output Daily: River Depth; Hourly : Water level

Sequence number

Daily: Piacenza (13), Monte P.Te Revere, Cavanella (6); Hourly: 24 (all three stations)

Dataset Distribution Structure

Training set (80%), Validation set (20%), Testing set ( last 14 days or 24 hours)

Activation Function

Rectified linear unit dReLUb

Loss Function

Mean Square Error (MSE)

Number of Epochs 50
Batch Size default (32)
Optimizer Adam

Model structure

One bidirectional layer of |GRU|layer with 50 units followed by 1 Dimensional
Global Average Pooling layer and Output layer by a Dense layer with 1 unit.

Table 22: Model configuration details of the network for time series forecasting.
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Parameter

Value

Input

River Depth, Water level and River Discharge rate

Output

Daily: River Depth; Hourly : Water level

Sequence number

Daily: Piacenza (13), Monte P.Te Revere, Cavanella (6); Hourly: 24 (all three stations)

Dataset Distribution Structure

Training set (80%), Validation set (20%), Testing set ( last 14 days or 24 hours)

Activation Function

Rectified linear unit (1RcLUb

Loss Function

Mean Square Error (MSE)

Number of Epochs

50

Batch Size

default (32)

Optimizer

Adam

Model structure

One bidirectional layer of CNN branch with kernel size 3, filter size 128,
LSTM|layer with 100 units, joined using concatenation layer and final

output layer by a Dense layer with 1 unit.

Table 23: Model configuration details of the hybrid approach of [LSTNet| network for

time series forecasting.

To train the [VAR] model, complete historical data is utilized, with the last 14 records
reserved for testing the daily model and the last 24 records reserved for testing the
hourly model. For the current analysis, tsa.vector_ar model from statsmodels library
(Seabold and Perktold, 2010) is used and executed in Python 3.11.8 (Python Software
Foundation, 2023)).

Parameter Value
Input River Depth, Water level and River Discharge rate
Output River Depth, Water level and River Discharge rate (Both Daily and Hourly)

Dataset Distribution Structure | Training set, Testing set ( last 14 days or 24 hours)

Daily (default: D), Hourly (default: H)

freq

Table 24: Model configuration details of the statistical approach Vector Auto Regres-
sion(VAR) for time series forecasting.

8.4. Cross Validation

To further evaluate the model’s performance and robustness, a 20 fold cross validation
procedure is employed. This approach divides the dataset into 20 equally-sized folds,
each serving as a validation set while the remaining folds are used for training. The
process is repeated 20 times with a different fold designated as the validation set. By
averaging the evaluation metrics, such as RMSE] across the folds, a more reliable esti-
mate of the model’s performance is obtained. This accounts for variability in the data

and reduces the risk of overfitting.
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After the best-performing model is identified, its forecasting results are used to calcu-
late the probability of navigability risk. The model’s predictive capabilities are further
leveraged to assess the likelihood of potential navigational challenges or hazards based

on the forecasted river depth.

9. Findings and Discussion

The subsequent section presents the outcomes of an extensive investigation using machine
learning algorithms to deepen the understanding of river depth forecasting at critical
points along the River Po. This analysis addresses the research question[RQR, as outlined
in section [[.2] The section showcases the results of daily river depth forecasting and
hourly water level forecasting using the machine learning approaches discussed in section
[Bl These forecasts are conducted at pivotal locations such as Piacenza, Monte P.Te
Revere and Cavanella, providing valuable insights into the predictive capabilities of the
developed models and their implications for navigational planning and risk assessment

along the River Po.

The aim is to compare the effectiveness of machine learning algorithms, including[LSTM]
[GRU| [LSTNet| and [VAR] models, in predicting water depth levels at critical points. Ad-

ditionally, the research explores the probabilities of navigational risk for various ship

classes based on forecasted water depth levels. This section entails a structured presen-
tation of comparative discussions through findings, detailed analysis and considerations

of limitations and validity.

9.1. Forecasting Results

The forecasted daily river depth values at Piacenza (see tablein the appendix), Monte
P.Te Revere (see table 40| in the appendix) and Cavanella (see table [41]in the appendix)
shallow points are presented over distinct date ranges, utilising a variety of predictive
models such as (Vanilla), (tuned), [GRU} [LSTNet|and [VAR] Based on the
available data, the forecasting period of daily models is 14 days from 10 October 2021
to 06 November 2021 for Piacenza, 29 April 2022 to 05 May 2022 for Monte P.Te Revere
and 14 January 2019 to 27 January 2019 for Cavanella.

The daily forecasting results for the specified dates across the shallow points can be
found in tables [39] [40] and [41] in the appendix, which present the outcomes obtained
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from the considered models using testing data. Similarly, the hourly forecasting results

produced by the considered models can be viewed in figures [44] and [5] in the appendix.

Cavanella Forecasted Depth Level for Next 14 Days
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Figure 28: Results from daily river depth forecasts for next 14 days at Cavanella by
corresponding models.

In examining the daily forecasted river depth values across different locations and date
ranges, the hybrid model emerges as a consistent performer, showcasing stable
and accurate predictions with low variability compared to the other models (see figures
and [41] in the appendix). Specifically, at Piacenza, the model, alongside
(tuned) and effectively captures the pattern in river depth fluctuations,
exhibiting closely aligned forecasts. Similarly, at Monte P.Te Revere and Cavanella,
consistently delivers competitive performance in capturing observed river depth
trends. Although |[GRU| and [LSTM] (tuned) also offer good predictions, they may dis-
play more variability, particularly in response to changing input data. Conversely, the
(Vanilla) with standard parameters and model shows less distinct perfor-
mance, characterised by higher forecast variability than the neural network counterparts.
Overall, the model is reliable and robust in river depth forecasting.

Regarding the hourly forecasting results at Monte P.Te Revere, the model
demonstrates superior prediction performance compared to the other models, closely
aligning with the actual testing data (see to figure 44 in the appendix). Conversely, the
results from Cavanella (see figure 45| in the appendix) show similar forecasting capabil-
ities among [LSTM], [GRU| and [LSTNet| models, with minor variations from the actual

testing data. This behaviour is expected because the actual testing data at Cavanella
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exhibits variability within a few hours, making it challenging for models to precisely

predict every fluctuation.

9.2. Comparative Analysis

The comparison analysis allows for assessing each model’s predictive capability in cap-
turing daily variations in water depth and hourly water levels at the shallow points. The
[RMSE| metric provides insights into the magnitude of prediction errors, with lower RMSE]|
values indicating better predictive accuracy. Additionally, training times highlight the
computational efficiency of each model, which is crucial for real-time or operational
applications. These performance metrics collectively inform the selection of the most
effective machine learning approach for river depth forecasting in navigational contexts

along the River Po.

Daily Forecasting Models

The table compares the performance of various machine learning models on daily
time series data of Piacenza, Monte P.Te Revere and Cavanella. The evaluation met-
rics include [RMSE] in centimetres of river depth and training time in seconds. [RMSE]

measures the accuracy of forecasted results against actual observations of the validation

data set.
Piacenza Monte P.Te Revere Cavanella
Model RMSE| Training Time | RMSE| Training Time |  RMSE| Training Time
LSTM (Vanilla) | 28.055 341.532 27.132 128.186 29.408 203.641
LSTM (tuned) 14.475 41.305 19.686 13.007 24.261 24.173
GRU 14.667 96.184 26.987 31.214 24.424 47.173
LSTNET 13.778 36.474 25.211 20.330 23.753 21.154
VAR 26.769 0.009 36.090 0.008 37.030 0.008

Table 25: Performance comparison of different models on daily time series data at all
three shallow points.

The results show that the Recurrent neural network (Vanilla) model, despite its
extended training time exceeding 341 sec (approx. 5 minutes) for Piacenza, exhibits
moderate performance with values ranging from 27.132 to 29.408 across the
shallow points. In contrast, the tuned [LSTM|model demonstrates improved performance
with lower [RMSE] values ranging from 14.475 to 24.261, with still considerable training
times. The [GRU] model achieves comparable performance with [RMSE] values ranging
from 14.667 to 26.987 and moderate training times. Notably, the hybrid approach with

65



the[LSTNef] model stands out with the lowest [RMSE] values ranging from 13.778 to 25.211
and relatively shorter training times, balancing performance and efficiency. In contrast,
the statistical approach of the [VAR] model, while efficient in training time, shows higher
[RMSE] values ranging from 26.769 to 37.030, indicating less accurate predictions than

the neural network models.

Overall, the findings suggest that the hybrid approach combining layer technique
with [RNN] architecture, specifically is a promising model for daily water depth
prediction at critical points along the River Po, providing both accuracy and efficiency.
The results highlight the trade-offs between model complexity, prediction performance
and training time, offering valuable insights for decision-making in navigational planning

and risk assessment scenarios.
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Figure 29: Performance of the [LSTNet| model on the Piacenza dataset at each cross-
validation fold, comparing actual and predicted values using the RMSE| met-
ric.

To assess the robustness of the model, a 20-fold cross-validation method is
employed. Figure 29| compares actual and predicted river depth for each fold within the

cross-validation process at Piacenza critical point. The model’s performance across all
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folds is evaluated using [RMSE] values, ranging from the most favourable result of 38.93
cm to 103.74 cm. Similarly, the results from cross-validation on Monte P.Te Revere
(see figure and Cavanella (see figure show consistent outcomes. Table [42|in the
appendix refers to average [RMSE] values across all folds at the Piacenza, Monte P.Te
Revere and Cavanella shallow points reflecting the model’s robustness irrespective of

input data.
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Figure 30: Line graph comparing LSTNet model predictions with actual values of the
cross validation data for daily river depth levels in Monte P.Te Revere.

The results from the unseen validation data are presented in figure 30} illustrating the
model’s performance in predicting river depth over the last 1000 records of cross vali-
dation data. This figure highlights the model’s ability to capture significant temporal
dependencies, including short-term and long-term patterns. This graph underscores the
model’s effectiveness in leveraging historical data to make accurate predictions, empha-
sising its capability to capture and adapt to temporal variations in river depth dynamics

at critical locations at the selected points along the River Po.
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Hourly Forecasting Models

Similar to the daily forecasting model, the hourly time series model presents table [26]
which compares the performance of various machine learning models in forecasting water
levels from critical points. [RMSE] measures the accuracy of forecasted results against

actual observations of the validation data set.

Piacenza Monte P.Te Revere Cavanella
Model RMSE| Training Time | RMSE| Training Time || RMSE| Training Time
LSTM (Vanilla) | 26.903 1452.514 19.203 1087.333 13.128 784.173
GRU 24.727 394.214 17.369 278.260 12.327 228.440
LSTNeT 22.801 695.727 10.515 496.175 14.470 363.490
VAR 45.002 0.166 48.701 0.118 47.087 0.117

Table 26: Performance comparison of different models on hourly time series data at all
three shallow points.

The results show notable differences in model performance across different locations and
algorithms. The (Vanilla) model exhibits moderate performance with
values ranging from 13.128 cm to 26.903 cm across the three locations, accompanied by
relatively longer training times ranging from about 784 to 1452 seconds. In comparison,
the [GRU] model performs competitively with lower RMSE] values ranging from 12.327
cm to 24.727 cm and relatively shorter training times ranging from approximately 228
to 394 seconds.

emerges as the top-performing model, achieving notably lower [RMSE] values,
particularly reaching 10.515 cm for Monte P.Te Revere. However, this superior perfor-

mance takes longer training times, ranging from about 363 to 695 seconds. In contrast
to that, the[VAR] model exhibits higher RMSE] values ranging from 45.002 cm to 48.701
cm, indicating less accurate predictions than neural network-based models. Despite its

simplicity, the VAR] model maintains minimal training times.

In summary, demonstrates exceptional accuracy in hourly water depth predic-
tion due to its higher training set size compared to daily training set size, particularly
at Monte P.Te Revere, although with longer training times. The trade-offs between
prediction accuracy and computational efficiency outline the practical considerations in
selecting the most suitable model for operational use in river management and naviga-
tional planning scenarios along the River Po. These findings provide valuable insights
into the comparative performance of machine learning approaches and inform decision-

making processes for calculating navigational risk at these points.
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9.3. Probability of Navigational Risk at Shallow Points

The navigability assessment of the Po River incorporates a statistical method recom-
mended by the [ATPo] authority. To address the research question stated in section
the time series of historical daily water depth levels available at each monitoring sta-
tion can be used to define a reasonable estimation of probability along Piacenza, Monte
P.Te Revere and Cavanella. Combined with the forecasted daily water depth level data
by the best machine learning model in section [0.2] those probabilities provide a primary
method to compute the likelihood of navigability for each ship class for 14 days. The
probability is calculated based on the percentage of occurrences of the event where water

depth levels are greater than the minimum ship draft in the historical data.

Number of days where depth > minimum depth classand Q@ < Qops
Total number of days where Q@ < Qobs

Pcr.point (nav) =

The formula determines the likelihood of the observed depth (Q__obs) being less than or
equal to a specific threshold depth (Q) while the water depth exceeds a minimum class
depth. This probability is derived by dividing the days where the water depth surpasses
the minimum class threshold and is less than or equal to the observed depth by the total
number of days where the depth is less than or equal to the observed depth.
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Figure 31: Probabilities for safe navigation (in green) and risk (in red) at the Piacenza
shallow point based on forecasted river depth by the LSTNet model for the
upcoming 14 days.

Figure [31] provides a detailed outlook of how ship draft length and forecasted river depth
influence the probability of navigation risk across various dates from 24 October to 06
November 2021 at Piacenza. The data reveals a consistent trend, where the probability
of navigation risk increases when ship draft length increases. For instance, on 24 October
2021, the probability values for ship drafts of 140, 160, 180, 200, 220 and 250 centimetres
were 99.25, 96.37, 85.28, 69.39, 44.06 and 8.93, respectively. These values suggest that
ships with shallower drafts face significantly lower risks compared to those with deeper

drafts under similar river conditions. Furthermore, the table highlights fluctuations
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in risk probabilities across different dates, indicating varying river depths impacting
navigation safety. Days with higher probability values (coloured in green) likely signify

safer river conditions. In contrast, lower values (coloured in red) indicate a heightened

risk for navigation chances due to shallower river depth levels.
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Figure 32: Probabilities for safe navigation (in green) and risk (in red) at the Monte
P.Te Revere based on forecasted river depth by the LSTNet model for the
upcoming 14 days.

Similarly, projections from Monte P.Te Revere (see figure and Cavanella (see figure
indicate higher probabilities (highlighted in green) of safe navigation across the
forecasted period for all draft lengths except for the 250 class. The noticeable reduction in
probability (highlighted in red) for the 250 class suggests potential caution for navigation
in this specific draft category.
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Figure 33: Probabilities for safe navigation (in green) and risk (in red) at the Cavanella
shallow point based on forecasted river depth by the LSTNet model for the
upcoming 14 days.

Understanding these temporal patterns is crucial for informed navigation planning, en-
abling ships to assess risk levels and make informed decisions to ensure safe passage
through river environments. By leveraging results from hourly water level forecasts (see
figure and visualising trends in water levels near shallow points, more profound
insights can be gained to enhance planning for upcoming hours. As described in the fea-
ture engineering section [6] the strong correlation between river depth levels and water
levels underscores the importance of such analyses in providing actionable information

for refining navigation risk management strategies.
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Figure 34: Plot of forecasted hourly water levels at the Monte P.Te Revere shallow point
for the next 24 hours using the LSTNet model.

For example, the forecast from Monte P.Te Revere (see Figure for the next 24 hours
illustrates a favorable trend of improved navigation safety, with water levels ranging from
820 to 840 cm. These levels exceed the maximum ship draft length of 250 cm over the
forecasted time frame, providing safe passage to ships. This information is crucial for
understanding the relative risks associated with different ship draft lengths and guiding

navigation decisions accordingly.

9.4. Limitations and Validity

When considering the limitations and validation aspects of this thesis, several critical
points emerge concerning the forecasting of river depth and the reliability of the available
data.

The primary limitation is reliance on daily data for river depth forecasting, which in-
herently restricts the ability to capture hourly fluctuations and variations that could
significantly impact navigational planning. The original daily river depth measurements
are recorded and stored based on 10-centimetre differences rather than capturing data at
a finer granularity of each centimetre. The RMSE] values presented in table 25| reflect the
differences between actual and predicted river depth, emphasising the challenges posed
by this granularity limitation. Notably, results from the table [42] in the appendix sug-
gest that rounding forecasted river depth values to the nearest 10-centimetre increment

reduces error rates when compared against actual values.

The absence of finer-grained hourly river depth data significantly limits the precision
and responsiveness of forecasting models, particularly in capturing rapid changes and
significant events at the shallow points along the River Po. Current hourly forecast-

ing relies on water level stations geographically proximate to these points, which may
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not fully capture the variations in river depth. Additionally, the lack of information
about sand dunes at shallow points further contributes to forecasting limitations, as
these features play a crucial role in shaping river dynamics and navigational conditions
(Whitmeyer and FitzGerald, [2006). This data constraint poses challenges in accurately
representing short-term fluctuations and rapid changes, potentially leading to inaccu-
racies in forecasting outcomes. Enhancing data resolution by integrating finer-grained
hourly river depth measurements is crucial for improving the reliability and effectiveness
of river depth forecasting models. Additionally, incorporating detailed information on
environmental features like sand dunes can enhance maritime safety and risk assessment

capabilities along the River Po.

Regarding climate data, the observed low correlation values based on findings in section
[6.2) may indicate limitations in capturing the full spectrum of climate impacts on shallow
points along the River Po. The reliance on daily data for climate variables may obscure
finer-scale patterns and associations, limiting the scope of insights into the direct influ-
ence of climate factors on river depth variations. However, despite the challenges posed
by low correlation values from daily climate data, the current analysis has successfully
identified geographical points where climate factors have a noticeable impact on river
depths. This positive perspective highlights the practical utility of findings, emphasis-
ing the importance of understanding localised climate impacts even with limited data
resolution. By identifying specific geographical areas of influence, future research can
prioritise targeted interventions and further investigate to enhance the understanding of

climate-river dynamics interactions along the River Po.

Furthermore, the presence of missing data, regardless of imputation techniques, poses a
substantial challenge, affecting the completeness and accuracy of the datasets used for
model training and validation. Missing data points can introduce biases and uncertain-

ties, potentially influencing the performance and reliability of the forecasting models.

Future research and data collection efforts should prioritise addressing these limitations
to advance the understanding and predictive capabilities in river management and nav-

igation.

9.5. Future Scope

By extending this thesis, future directions include integrating the developed forecasting
model with the river discharge values from [EFAS| (Copernicus Climate Change Ser-
vice, [2019)) to enhance river depth predictions. Additionally, leveraging the Coperni-
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cus weather forecasting model (European Centre for Medium-Range Weather Forecasts
(ECMWF )| 2022), post-training with historical climate data, can significantly improve
predictive accuracy by providing advanced weather predictions. Incorporating data on
extreme weather events from historical climate records into the model would further en-
hance its resilience and capacity to anticipate disruptions such as storms, heavy rainfall

or droughts.

From a logistics perspective, the model can be applied to synchronise various supply
chain modes, including road, rail and inland transportation. This helps to optimise
corridor logistics and enhance resilience in managing river systems. These advancements
collectively contribute to more robust and adaptive forecasting systems, vital for effective
water management and logistics planning amidst evolving environmental challenges and

extreme weather conditions.

9.6. Publication

The substantive content of this research is developed as part of a research publication
titled "Towards an Automatic Tool for Resilient Waterway Transport: The Case of
the Italian River Po," which has been accepted by [MDPI| Proceedings and is pending
publication. The work will also be presented at the 2024 (10th International
Conference on Time Series and Forecasting), followed by selected contributions that
will be considered to be published in the book series of "Springer: Contributions to
Statistics". This work represents a significant contribution to the field of statistics and
logistics, particularly inland waterway transport resilience. It highlights the importance
of leveraging advanced machine learning forecasting techniques for effective navigational
planning along the River Po. This research aims to enhance the resilience and efficiency

of waterway transport systems through data-driven insights and predictive modelling.
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10. Summary

The analysis conducted within the framework of [CRISTAT] project focuses on develop-
ing data-driven solutions for effective navigational planning in inland waterways. The
River Po in northern Italy offers significant potential for navigation by enhancing supply
chain management and corridor logistics. The navigable stretch of the Po River, while
offering strategic advantages, presents challenges due to shallow points that can disrupt
navigation under specific hydro-metric conditions. The presence of shallow points within
distinct branches is part of the navigational complexity. Developing a machine learn-
ing prediction model capable of providing timely and forecasted information on river
depth levels at these shallow points was essential for overcoming logistical challenges

and ensuring accurate planning.

This thesis has addressed three key research questions to enhance the understanding of
river depth fluctuations and navigational risk along the River Po. Firstly, the investiga-
tion into key hydrological components revealed significant influences of river discharge
rates, upstream water levels, total precipitation, temperature and snow depth on daily
river depth fluctuations at shallow points (Piacenza, Monte P.Te Revere, Cavanella)
within the River Po. Through experiments conducted during feature engineering of
hydrological components, it was concluded that river discharge rates (correlation coeffi-
cients: 0.85, 0.92, 0.88) and upstream water levels (correlation coefficients: 0.89, 0.95,
0.87) exhibit a robust correlation, significantly influencing river depth at shallow points

(Piacenza, Monte P.Te Revere, Cavanella).

From the perspective of climate attributes, like total precipitation, temperature and
snow depth, show weaker correlation values (maximum is 0.46) than other hydrological
attributes. However, total precipitation was found to have a notable effect on river
depth fluctuations when considering geographically influencing regions (within the river
catchment area). For instance, the Piacenza depth point showed the highest correlation
value of 0.46 with a lag of 3 days relative to precipitation in the Graian Alps mountains,
situated 135 km from the critical point. Similarly, despite the less evident correlation
value, results indicate the direction of the relationship between river depth levels with
snow depth and temperature over the river basin across all three shallow points, with

an average lag of 359 days (based on lag starting from March).

Secondly, comparing daily and hourly forecasting abilities of machine learning algo-
rithms (LSTM] [GRU| [LSTNet] [VAR]) revealed varying performance in predicting water
depth levels at critical points along the River Po. Among these models, the hybrid
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approach using the model demonstrated notable forecasting accuracy with the
lowest [RMSE] values ranging from 13.778 cm to 25.211 cm for daily forecasts and 10.515
cm to 22.801 cm for hourly forecasts across the critical points. Additionally, the [LST-
model exhibited relatively shorter training times than other recurrent networks like
This combination of strong predictive performance and efficiency underlines the
effectiveness of the model in achieving a favourable accuracy, outperforming

traditional recurrent networks and statistical approaches like [VAR]

Lastly, assessing navigational risk probabilities for different ship classes at critical shal-
low points using the best-performing machine learning algorithm provided
valuable insights into safety considerations and navigational planning along the River
Po. Projections from Monte P.Te Revere and Cavanella demonstrate higher probabilities
of safe navigation across the forecasted period for all draft lengths except for the 250
class. The noticeable reduction in probability for the 250 class suggests caution may be
warranted for navigation within this specific draft category. By leveraging results from
hourly water level forecasts and visualising trends in water levels near shallow points,

more profound insights can be gained to enhance planning for upcoming hours.

The findings from this study highlight the critical need to enhance data resolution and re-
fine predictive modelling techniques to strengthen waterway transport resilience. Despite
notable advancements, limitations arise from factors such as data granularity, sample
size, absence of sand dunes information and climate data, which constrain the accuracy
and resolution of current forecasting models. Future research efforts prioritise exploring
fine granular data collection methods and integrating additional environmental variables

to improve forecasting model precision.

In conclusion, this thesis provides valuable insights into the complex relationships among
hydrology, machine learning and logistics along the River Po. This study also helps future
research and practical applications in waterway transport resilience and management,
especially in the Po River. This analysis acts as a foundation step for advancing research
in hydrology, digital twin technology and synchronous logistics models that integrate di-
verse transportation methods to achieve environmental objectives. Furthermore, in the
domain of data science, this work demonstrates the effectiveness of various machine
learning models through comparison. It also demonstrates applying advanced machine-
learning techniques to address real-time challenges in the logistics domain. This inte-
grated approach holds significant promise for enhancing waterway transport resilience

and sustainability
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Appendices

A. Additional Figures
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Figure 35: Graphs from seasonal decompose method using the additive model on Pia-
cenza dataset.
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Figure 36: Graphs from seasonal decompose method using the additive model on Monte
P.Te Revere dataset.
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Figure 37: Graphs from seasonal decompose method using the additive model on Ca-
vanella dataset.
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Total Precipitation influence on Monte P.Te Revere shallow point
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Figure 38: Map highlighting regions (in red) with maximum cross-correlation between
total precipitation and river depth at Monte P.Te Revere (blue point).
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Figure 39: Map highlighting regions (in red) with maximum cross-correlation between
total precipitation and river depth at Cavanella (blue point).
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Figure 40: Plot of forecasted daily depth levels at the Piacenza shallow point for the
next 14 days by selected models.
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Revere Forecasted Depth Level for Next 14 Days
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Figure 41: Plot of forecasted daily depth levels at the Monte P.Te Revere shallow point
for the next 14 days by selected models.
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Figure 42: Performance of the LSTnet model on the Monte P.Te Revere dataset at each
cross- validation fold, comparing differences among actual and predicted val-
ues using the RMSE metric.
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Figure 43: Performance of the LSTnet model on the Cavanella dataset at each cross- val-
idation fold, comparing differences among actual and predicted values using
the RMSE metric.
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Figure 44: Plot of forecasted hourly upstream water levels at the Monte P.Te Revere
shallow point for the next 24 hours by selected models.
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Figure 45: Plot of forecasted hourly upstream water levels at the Cavanella shallow point
for the next 24 hours by selected models.
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B. Additional Tables

Location Distance  Lag Correlation value
45.25,8.0 135.312866 3 0.465442
45.25,7.75 154.701999 3 0.459719
45.5,7.75 160.577976 3 0.452488
45.0,7.75  153.705467 3 0.449365

45.5,8.0  142.080649 3 0.448031

Table 27: Top 5 locations exhibiting the highest cross-correlation with total precipitation
at the Piacenza shallow point over a specified number of days (lag).

Location Distance  Lag Correlation value

45.0,8.0  134.080365 359 —0.127683
44.5,8.75  97.620648 359 —0.127646
44.25,7.5 196.158305 2 —0.127481
44.75,8.0  138.530966 359 —0.127070
44.75,7.75 157.680921 359 —0.125815

Table 28: Top 5 locations exhibiting the highest cross-correlation with temperature at
the Piacenza shallow point over a specified number of days (lag).

Location Distance Lag  Correlation value
46.25,10.0 134.456731 360.0 —0.260711
46.25,9.75  132.524294 360.0 —0.246129
46.25,10.25 139.102622 361.0 —0.240595
46.0,10.5  121.655949 362.0 —0.201759
46.0,10.75  132.640987 365.0 —0.200127

Table 29: Top 5 locations exhibiting the highest cross-correlation with snow depth at
the Piacenza shallow point over a specified number of days (lag).
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Location Distance  Lag Correlation value
45.25,8.75 188.201536 4 0.404489

45.0,8.75  187.462622 4 0.390845
44.75,8.75 190.813378 4 0.383074
45.5,8.75  192.983149 4 0.380024

45.0,9.0 167.829150 4 0.379251

Table 30: Top 5 locations exhibiting the highest cross-correlation with total precipitation
at the Monte P.Te Revere shallow point over a specified number of days (lag).

Location Distance  Lag Correlation value

44.5,8.75 198.046331 361 -0.209718
44.5,9.25 161.022213 361 -0.207072
44.75,8.75 190.813378 361 -0.204479

44.5,9.5  142.999393 359 -0.204303
44.5,10.0 108.747295 359 -0.203626

Table 31: Top 5 locations exhibiting the highest cross-correlation with temperature at
the Monte P.Te Revere shallow point over a specified number of days (lag).

Location Distance Lag  Correlation value
46.25,10.0  159.430942 175.0 -0.141639
46.5,10.25 174.664635 161.0 -0.141414
46.25,10.25 149.567416 167.0 -0.136123
45.5,10.75  57.869833  210.0 -0.133654

45.5,10.5 70.053507  210.0 -0.131260

Table 32: Top 5 locations exhibiting the highest cross-correlation with snow depth at
the Monte P.te Revere shallow point over a specified number of days (lag).
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Location Distance  Lag Correlation value
44.75,10.0 170.882605 4 0.218575
44.75,9.75  190.303266 4 0.217492
44.5,10.25 159.672820 4 0.211367
44.75,10.25 151.532181 4 0.210845
44.5,10.0  178.216901 4 0.210784

Table 33: Top 5 locations exhibiting the highest cross-correlation with total precipitation
at the Cavanella shallow point over a specified number of days (lag).

Location Distance  Lag Correlation value
44.25,10.5 155.124716 360 —0.280212

44.5,10.0  178.216901 360 —0.279988

44.5,9.75  196.992590 361 —0.279535
44.25,10.75 139.052858 359 —0.276898
44.5,10.25 159.672820 360 —0.276556

Table 34: Top 5 locations exhibiting the highest cross-correlation with temperature at
the Cavanella shallow point over a specified number of days (lag).

Location Distance Lag  Correlation value
45.5,10.75 120.893230 216.0 —0.176565
45.5,10.25 156.950121 168.0 —0.171089
45.5,10.5 138.713599 168.0 —0.168527
45.5,10.0 175.472948 176.0 —0.124840
46.25,10.5 186.794230 166.0 —0.119593
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the Cavanella shallow point over a specified number of days (lag).



Layers Activation Function Units Epochs Batch Size RMSE

3 tanh 64 339 6 13.985152
3 tanh 70 339 6 14.079039
3 tanh 68 322 6 14.308261
3 tanh 60 343 18 14.309830
3 tanh 68 358 6 14.310603

Table 36: Results of the top 5 model configurations tuned using the FLAML tool on
Piacenza daily data.

Layers Activation Function Units Epochs Batch Size RMSE

3 tanh 109 11 179 18.904749
3 tanh 93 19 251 18.999330
3 tanh 96 10 246 19.803955
3 tanh 96 10 239 19.914644
3 tanh 93 18 242 20.095669

Table 37: Results of the top 5 model configurations tuned using the FLAML tool on
Monte P.Te Revere daily data.

Layers Activation Function Units Epochs Batch Size RMSE

3 relu 122 192 53 19.687378
3 relu 36 382 55 19.704619
3 relu 118 206 92 19.718627
3 relu 102 262 51 19.914872
3 relu 104 276 60 19.974990

Table 38: Results of the top 5 model configurations tuned using the FLAML tool on
Cavanella daily data.
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Forecast Depth LSTM (Vanilla) LSTM (tuned) GRU LSTNet VAR

24-10-2021  240.00 268.56 257.16 256.75 256.56 247.82
25-10-2021  240.00 268.99 252.24 251.79 251.69 248.72
26-10-2021  240.00 268.86 247.36 246.77 246.78 250.80
27-10-2021  230.00 268.25 243.58 243.00 243.04 253.16
28-10-2021  240.00 266.82 238.35 237.69 237.71 255.39
29-10-2021  230.00 265.74 234.20 233.57 233.18 257.34
30-10-2021  240.00 261.02 229.10 228.58 228.49 258.97
31-10-2021  220.00 254.67 225.30 224.73 224.79 260.30
01-11-2021  220.00 248.41 221.73 221.06 221.03 261.39
02-11-2021  220.00 242.52 218.93 218.20 219.10 262.26
03-11-2021  220.00 237.38 217.47 216.83 218.52 262.97
04-11-2021  240.00 237.94 222.73 222.46 224.26 263.55
05-11-2021  270.00 240.27 231.23 230.80 232.77 264.02
06-11-2021  270.00 247.48 251.57 249.37 252.66 264.41

Table 39: Forecast of daily river depth over a 14-day period at the Piacenza shallow
point for selected models.

Forecast Depth LSTM (Vanilla) LSTM (tuned) GRU LSTNet VAR

29-04-2022  320.00 298.62 293.31 298.73 296.55 342.07
30-04-2022  320.00 348.94 329.92 348.46 345.94 343.91
01-05-2022  380.00 386.19 371.48 387.76 383.76 345.72
02-05-2022  390.00 396.90 390.20 397.66 394.80 347.59
03-05-2022  390.00 400.75 408.08 401.50 397.14 349.56
04-05-2022  400.00 397.63 412.32 397.11 394.38 351.65
05-05-2022  380.00 393.71 405.36 390.48 382.46 353.85
06-05-2022  350.00 350.56 368.23 349.74 342.53 356.15
07-05-2022  330.00 323.52 340.73 321.79 323.26 358.53
08-05-2022  320.00 311.08 321.52 310.52 310.37 360.97
09-05-2022  360.00 339.46 317.58 337.28 339.15 363.46
10-05-2022  360.00 387.14 336.50 386.32 381.73 365.98
11-05-2022  400.00 453.28 392.11 451.52 440.99 368.53
12-05-2022  450.00 517.02 474.54 517.39 519.04 371.08

Table 40: Forecast of daily river depth over a 14-day period at the Monte P.Te Revere
shallow point for selected models.
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Forecast Depth LSTM (Vanilla) LSTM (tuned) GRU LSTNet VAR

14-01-2019  390.00 363.02 362.92 359.84 363.62 383.58
15-01-2019  350.00 358.54 338.57 347.81 335.19 378.47
16-01-2019  330.00 353.37 315.36 336.84 314.40 374.38
17-01-2019  310.00 347.84 292.25 326.88 297.91 371.09
18-01-2019  290.00 343.06 280.53 322.05 286.80 368.40
19-01-2019  310.00 346.16 296.82 329.67 298.28 366.20
20-01-2019  360.00 350.72 311.51 340.73 318.21 364.36
21-01-2019  360.00 350.10 346.23 344.18 345.08 362.80
22-01-2019  360.00 350.24 371.40 347.22 373.68 361.46
23-01-2019  360.00 351.29 396.00 349.81 395.98 360.28
24-01-2019  380.00 352.32 413.00 353.12 415.74 359.22
25-01-2019  380.00 352.33 398.32 353.60 398.47 358.25
26-01-2019  380.00 353.57 383.21 356.16 382.38 357.35
27-01-2019  400.00 348.80 365.62 346.95 362.96 356.51

Table 41: Forecast of daily river depth over a 14-day period at the Cavanella shallow
point for selected models.

RMSE Piacenza Monte P.Te Revere Cavanella
Original 71.3509 64.5289 52.001
Floored 51.5148 43.1486 36.2442

Table 42: Comparison of average original versus floored RMSE values obtained from 20-
fold cross-validation of the LSTNet model across different shallow points.
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